Platformio integration (#424)

* adaptation of structure to platformio

* also remove zgatewayRF315 (not usefull)

* replace boolean by bool

#155
This commit is contained in:
Florian
2019-07-18 22:45:45 +02:00
committed by GitHub
parent 811054c904
commit 8471585d3d
845 changed files with 1200 additions and 623793 deletions

View File

@@ -1,38 +1,43 @@
language: c
dist: trusty
env:
- BD=arduino:avr:uno
- BD=arduino:avr:mega:cpu=atmega2560
- BD=esp8266:esp8266:nodemcuv2:CpuFrequency=80,FlashSize=4M3M
- BD=esp8266:esp8266:d1_mini:CpuFrequency=80,FlashSize=4M3M
- BD=esp32:esp32:esp32:PartitionScheme=min_spiffs,FlashFreq=80
before_install:
- "/sbin/start-stop-daemon --start --quiet --pidfile /tmp/custom_xvfb_1.pid --make-pidfile --background --exec /usr/bin/Xvfb -- :1 -ac -screen 0 1280x1024x16"
- sleep 3
- export DISPLAY=:1.0
- wget http://downloads.arduino.cc/arduino-$IDE_VERSION-linux64.tar.xz
- tar xf arduino-$IDE_VERSION-linux64.tar.xz
- sudo mv arduino-$IDE_VERSION /usr/local/share/arduino
- sudo ln -s /usr/local/share/arduino/arduino /usr/local/bin/arduino
# Continuous Integration (CI) is the practice, in software
# engineering, of merging all developer working copies with a shared mainline
# several times a day < https://docs.platformio.org/page/ci/index.html >
#
# Documentation:
#
# * Travis CI Embedded Builds with PlatformIO
# < https://docs.travis-ci.com/user/integration/platformio/ >
#
# * PlatformIO integration with Travis CI
# < https://docs.platformio.org/page/ci/travis.html >
#
# * User Guide for `platformio ci` command
# < https://docs.platformio.org/page/userguide/cmd_ci.html >
#
#
# Please choose one of the following templates (proposed below) and uncomment
# it (remove "# " before each line) or use own configuration according to the
# Travis CI documentation (see above).
#
#
# Template #1: General project. Test it using existing `platformio.ini`.
#
language: python
python:
- "2.7"
sudo: false
cache:
directories:
- "~/.platformio"
install:
- ln -s $PWD /usr/local/share/arduino/OpenMQTTGateway
- rm /usr/local/share/arduino/OpenMQTTGateway/User_config.h
- cp /usr/local/share/arduino/OpenMQTTGateway/tests/Test_config.h /usr/local/share/arduino/OpenMQTTGateway/User_config.h
- rm -rf /usr/local/share/arduino/libraries/RobotIRremote
- cp -R /usr/local/share/arduino/OpenMQTTGateway/lib/. /usr/local/share/arduino/libraries
- cd /usr/local/share/arduino/OpenMQTTGateway
- arduino --pref "boardsmanager.additional.urls=http://arduino.esp8266.com/stable/package_esp8266com_index.json,https://dl.espressif.com/dl/package_esp32_index.json" --save-prefs
- if [[ "$BD" =~ "esp8266:esp8266:" ]]; then
arduino --install-boards esp8266:esp8266:2.4.2;
fi
- if [[ "$BD" =~ "esp32:esp32:" ]]; then
arduino --install-boards esp32:esp32;
rm -rf /home/travis/.arduino15/packages/esp32/hardware/esp32/1.0.2/libraries/BLE;
fi
- pip install -U platformio
- platformio update
- rm /home/travis/build/1technophile/OpenMQTTGateway/main//User_config.h
- cp /home/travis/build/1technophile/OpenMQTTGateway/test/Test_config.h /home/travis/build/1technophile/OpenMQTTGateway/main//User_config.h
script:
- arduino --verify --board $BD $PWD/OpenMQTTGateway.ino
notifications:
email:
on_success: change
on_failure: change
- platformio run

View File

@@ -1,155 +0,0 @@
/*
OpenMQTTGateway - ESP8266 or Arduino program for home automation
Act as a wifi or ethernet gateway between your 433mhz/infrared IR signal and a MQTT broker
Send and receiving command by MQTT
This gateway enables to:
- receive MQTT data from a topic and send RF 315Mhz signal corresponding to the received MQTT data
- publish MQTT data to a different topic related to received 315Mhz signal
Copyright: (c)Florian ROBERT
This file is part of OpenMQTTGateway.
OpenMQTTGateway is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenMQTTGateway is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ZgatewayRF315
#include <RCSwitch.h> // library for controling Radio frequency switch
RCSwitch mySwitch315 = RCSwitch();
void setupRF315(){
//RF init parameters
mySwitch315.enableTransmit(RF315_EMITTER_PIN);
trc(F("RF315_EMITTER_PIN "));
trc(RF315_EMITTER_PIN);
mySwitch315.setRepeatTransmit(RF315_EMITTER_REPEAT);
mySwitch315.enableReceive(RF315_RECEIVER_PIN);
trc(F("RF315_RECEIVER_PIN "));
trc(RF315_RECEIVER_PIN);
trc(F("ZgatewayRF315 setup done "));
}
boolean RF315toMQTT(){
if (mySwitch315.available()){
trc(F("Creating RF315 buffer"));
const int JSON_MSG_CALC_BUFFER = JSON_OBJECT_SIZE(4);
StaticJsonBuffer<JSON_MSG_CALC_BUFFER> jsonBuffer;
JsonObject& RF315data = jsonBuffer.createObject();
trc(F("Rcv. RF315"));
#ifdef ESP32
String taskMessage = "RF Task running on core ";
taskMessage = taskMessage + xPortGetCoreID();
trc(taskMessage);
#endif
RF315data.set("value", (unsigned long)mySwitch315.getReceivedValue());
RF315data.set("protocol",(int)mySwitch315.getReceivedProtocol());
RF315data.set("length", (int)mySwitch315.getReceivedBitlength());
RF315data.set("delay", (int)mySwitch315.getReceivedDelay());
mySwitch315.resetAvailable();
unsigned long MQTTvalue = RF315data.get<unsigned long>("value");
if (!isAduplicate(MQTTvalue) && MQTTvalue!=0) {// conditions to avoid duplications of RF -->MQTT
trc(F("Adv data RF315toMQTT"));
pub(subjectRF315toMQTT,RF315data);
trc(F("Store to avoid duplicate"));
storeValue(MQTTvalue);
if (repeatRF315wMQTT){
trc(F("Publish RF315 for repeat"));
pub(subjectMQTTtoRF315,RF315data);
}
}
}
}
#ifdef simpleReceiving
void MQTTtoRF315(char * topicOri, char * datacallback) {
unsigned long data = strtoul(datacallback, NULL, 10); // we will not be able to pass values > 4294967295
// RF315 DATA ANALYSIS
//We look into the subject to see if a special RF protocol is defined
String topic = topicOri;
int valuePRT = 0;
int valuePLSL = 0;
int valueBITS = 0;
int pos = topic.lastIndexOf(RF315protocolKey);
if (pos != -1){
pos = pos + +strlen(RF315protocolKey);
valuePRT = (topic.substring(pos,pos + 1)).toInt();
trc(F("RF315 Protocol:"));
trc(valuePRT);
}
//We look into the subject to see if a special RF pulselength is defined
int pos2 = topic.lastIndexOf(RF315pulselengthKey);
if (pos2 != -1) {
pos2 = pos2 + strlen(RF315pulselengthKey);
valuePLSL = (topic.substring(pos2,pos2 + 3)).toInt();
trc(F("RF315 Pulse Lgth:"));
trc(valuePLSL);
}
int pos3 = topic.lastIndexOf(RF315bitsKey);
if (pos3 != -1){
pos3 = pos3 + strlen(RF315bitsKey);
valueBITS = (topic.substring(pos3,pos3 + 2)).toInt();
trc(F("Bits nb:"));
trc(valueBITS);
}
if ((topic == subjectMQTTtoRF315) && (valuePRT == 0) && (valuePLSL == 0) && (valueBITS == 0)){
trc(F("MQTTtoRF315 dflt"));
mySwitch315.setProtocol(1,350);
mySwitch315.send(data, 24);
// Acknowledgement to the GTWRF topic
pub(subjectGTWRF315toMQTT, datacallback);
} else if ((valuePRT != 0) || (valuePLSL != 0)|| (valueBITS != 0)){
trc(F("MQTTtoRF315 usr par."));
if (valuePRT == 0) valuePRT = 1;
if (valuePLSL == 0) valuePLSL = 350;
if (valueBITS == 0) valueBITS = 24;
trc(valuePRT);
trc(valuePLSL);
trc(valueBITS);
mySwitch315.setProtocol(valuePRT,valuePLSL);
mySwitch315.send(data, valueBITS);
// Acknowledgement to the GTWRF topic
pub(subjectGTWRF315toMQTT, datacallback);// we acknowledge the sending by publishing the value to an acknowledgement topic, for the moment even if it is a signal repetition we acknowledge also
}
}
#endif
#ifdef jsonReceiving
void MQTTtoRF315(char * topicOri, JsonObject& RF315data) { // json object decoding
if (strcmp(topicOri,subjectMQTTtoRF315) == 0){
trc(F("MQTTtoRF315 json"));
unsigned long data = RF315data["value"];
if (data != 0) {
int valuePRT = RF315data["protocol"]|1;
int valuePLSL = RF315data["delay"]|350;
int valueBITS = RF315data["length"]|24;
mySwitch315.setProtocol(valuePRT,valuePLSL);
mySwitch315.send(data, valueBITS);
trc(F("MQTTtoRF315 OK"));
pub(subjectGTWRF315toMQTT, RF315data);// we acknowledge the sending by publishing the value to an acknowledgement topic, for the moment even if it is a signal repetition we acknowledge also
}else{
trc(F("MQTTtoRF315 Fail json"));
}
}
}
#endif
#endif

View File

@@ -1,62 +0,0 @@
/*
OpenMQTTGateway - ESP8266 or Arduino program for home automation
Act as a wifi or ethernet gateway between your 433mhz/infrared IR signal and a MQTT broker
Send and receiving command by MQTT
This files enables to set your parameter for the radiofrequency gateways (ZgatewayRF315 ) with RCswitch library
Copyright: (c)Florian ROBERT
This file is part of OpenMQTTGateway.
OpenMQTTGateway is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenMQTTGateway is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*-------------------RF topics & parameters----------------------*/
//433Mhz MQTT Subjects and keys
#define subjectMQTTtoRF315 Base_Topic Gateway_Name "/commands/MQTTto315"
#define subjectRF315toMQTT Base_Topic Gateway_Name "/315toMQTT"
#define subjectGTWRF315toMQTT Base_Topic Gateway_Name "/315toMQTT"
#define RF315protocolKey "315_" // protocol will be defined if a subject contains RFprotocolKey followed by a value of 1 digit
#define RF315bitsKey "RFBITS_" // bits will be defined if a subject contains RFbitsKey followed by a value of 2 digits
#define repeatRF315wMQTT false // do we repeat a received signal by using mqtt
/*
RF supported protocols
315_1
315_2
315_3
315_4
315_5
315_6
*/
#define RF315pulselengthKey "PLSL_" // pulselength will be defined if a subject contains RFprotocolKey followed by a value of 3 digits
// subject monitored to listen traffic processed by other gateways to store data and avoid ntuple
#define subjectMultiGTWRF315 "+/+/315toMQTT"
//RF number of signal repetition
#define RF315_EMITTER_REPEAT 20
/*-------------------PIN DEFINITIONS----------------------*/
#ifdef ESP8266
#define RF315_RECEIVER_PIN 4 // D3 on nodemcu
#define RF315_EMITTER_PIN 5 // RX on nodemcu
#elif defined(ESP32)
#define RF315_RECEIVER_PIN 13 // D13 on DOIT ESP32
#define RF315_EMITTER_PIN 12 // D12 on DOIT ESP32
#else
//IMPORTANT NOTE: On arduino UNO connect IR emitter pin to D9 , comment #define IR_USE_TIMER2 and uncomment #define IR_USE_TIMER1 on library <library>IRremote/IRremoteInt.h so as to free pin D3 for RF RECEIVER PIN
//RF PIN definition
#define RF315_RECEIVER_PIN 1 //1 = D3 on arduino
#define RF315_EMITTER_PIN 4 //4 = D4 on arduino
#endif

View File

@@ -1,21 +0,0 @@
# EditorConfig file: http://EditorConfig.org
# top-most EditorConfig file
root = true
# Unix-style newlines with a newline ending every file
[*]
end_of_line = lf
insert_final_newline = false
# 4 space indentation
[*.{cpp,h}]
indent_style = space
indent_size = 4
trim_trailing_whitespace = true
# 2 space indentation
[*.json]
indent_style = space
indent_size = 2
trim_trailing_whitespace = true

View File

@@ -1,504 +0,0 @@
#include <Arduino.h>
#include <SoftwareSerial.h>
#include "A6lib.h"
/////////////////////////////////////////////
// Public methods.
//
A6lib::A6lib(int transmitPin, int receivePin) {
#ifdef ESP8266
A6conn = new SoftwareSerial(receivePin, transmitPin, false, 1024);
#else
A6conn = new SoftwareSerial(receivePin, transmitPin, false);
#endif
A6conn->setTimeout(100);
}
A6lib::~A6lib() {
delete A6conn;
}
// Block until the module is ready.
byte A6lib::blockUntilReady(long baudRate) {
byte response = A6_NOTOK;
while (A6_OK != response) {
response = begin(baudRate);
// This means the modem has failed to initialize and we need to reboot
// it.
if (A6_FAILURE == response) {
return A6_FAILURE;
}
delay(1000);
logln("Waiting for module to be ready...");
}
return A6_OK;
}
// Initialize the software serial connection and change the baud rate from the
// default (autodetected) to the desired speed.
byte A6lib::begin(long baudRate) {
A6conn->flush();
if (A6_OK != setRate(baudRate)) {
return A6_NOTOK;
}
// Factory reset.
A6command("AT&F", "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
// Echo off.
A6command("ATE0", "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
// Switch audio to headset.
enableSpeaker(0);
// Set caller ID on.
A6command("AT+CLIP=1", "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
// Set SMS to text mode.
A6command("AT+CMGF=1", "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
// Turn SMS indicators off.
A6command("AT+CNMI=1,0", "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
// Set SMS storage to the GSM modem.
if (A6_OK != A6command("AT+CPMS=SM,ME,SM", "OK", "yy", A6_CMD_TIMEOUT, 2, NULL))
// This may sometimes fail, in which case the modem needs to be
// rebooted.
{
return A6_FAILURE;
}
// Set SMS character set.
setSMScharset("UCS2");
return A6_OK;
}
// Reboot the module by setting the specified pin HIGH, then LOW. The pin should
// be connected to a P-MOSFET, not the A6's POWER pin.
void A6lib::powerCycle(int pin) {
logln("Power-cycling module...");
powerOff(pin);
delay(2000);
powerOn(pin);
delay(4000);
powerOff(pin);
// Give the module some time to settle.
logln("Done, waiting for the module to initialize...");
delay(20000);
logln("Done.");
A6conn->flush();
}
// Turn the modem power completely off.
void A6lib::powerOff(int pin) {
pinMode(pin, OUTPUT);
digitalWrite(pin, LOW);
}
// Turn the modem power on.
void A6lib::powerOn(int pin) {
pinMode(pin, OUTPUT);
digitalWrite(pin, HIGH);
}
// Dial a number.
void A6lib::dial(String number) {
char buffer[50];
logln("Dialing number...");
sprintf(buffer, "ATD%s;", number.c_str());
A6command(buffer, "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
}
// Redial the last number.
void A6lib::redial() {
logln("Redialing last number...");
A6command("AT+DLST", "OK", "CONNECT", A6_CMD_TIMEOUT, 2, NULL);
}
// Answer a call.
void A6lib::answer() {
A6command("ATA", "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
}
// Hang up the phone.
void A6lib::hangUp() {
A6command("ATH", "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
}
// Check whether there is an active call.
callInfo A6lib::checkCallStatus() {
char number[50];
String response = "";
uint32_t respStart = 0, matched = 0;
callInfo cinfo = (const struct callInfo) {
0
};
// Issue the command and wait for the response.
A6command("AT+CLCC", "OK", "+CLCC", A6_CMD_TIMEOUT, 2, &response);
// Parse the response if it contains a valid +CLCC.
respStart = response.indexOf("+CLCC");
if (respStart >= 0) {
matched = sscanf(response.substring(respStart).c_str(), "+CLCC: %d,%d,%d,%d,%d,\"%s\",%d", &cinfo.index, &cinfo.direction, &cinfo.state, &cinfo.mode, &cinfo.multiparty, number, &cinfo.type);
cinfo.number = String(number);
}
uint8_t comma_index = cinfo.number.indexOf('"');
if (comma_index != -1) {
logln("Extra comma found.");
cinfo.number = cinfo.number.substring(0, comma_index);
}
return cinfo;
}
// Get the strength of the GSM signal.
int A6lib::getSignalStrength() {
String response = "";
uint32_t respStart = 0;
int strength, error = 0;
// Issue the command and wait for the response.
A6command("AT+CSQ", "OK", "+CSQ", A6_CMD_TIMEOUT, 2, &response);
respStart = response.indexOf("+CSQ");
if (respStart < 0) {
return 0;
}
sscanf(response.substring(respStart).c_str(), "+CSQ: %d,%d",
&strength, &error);
// Bring value range 0..31 to 0..100%, don't mind rounding..
strength = (strength * 100) / 31;
return strength;
}
// Get the real time from the modem. Time will be returned as yy/MM/dd,hh:mm:ss+XX
String A6lib::getRealTimeClock() {
String response = "";
// Issue the command and wait for the response.
A6command("AT+CCLK?", "OK", "yy", A6_CMD_TIMEOUT, 1, &response);
int respStart = response.indexOf("+CCLK: \"") + 8;
response.setCharAt(respStart - 1, '-');
return response.substring(respStart, response.indexOf("\""));
}
// Send an SMS.
byte A6lib::sendSMS(String number, String text) {
char ctrlZ[2] = { 0x1a, 0x00 };
char buffer[100];
if (text.length() > 159) {
// We can't send messages longer than 160 characters.
return A6_NOTOK;
}
log("Sending SMS to ");
log(number);
logln("...");
sprintf(buffer, "AT+CMGS=\"%s\"", number.c_str());
A6command(buffer, ">", "yy", A6_CMD_TIMEOUT, 2, NULL);
delay(100);
A6conn->println(text.c_str());
A6conn->println(ctrlZ);
A6conn->println();
return A6_OK;
}
// Retrieve the number and locations of unread SMS messages.
int A6lib::getUnreadSMSLocs(int* buf, int maxItems) {
return getSMSLocsOfType(buf, maxItems, "REC UNREAD");
}
// Retrieve the number and locations of all SMS messages.
int A6lib::getSMSLocs(int* buf, int maxItems) {
return getSMSLocsOfType(buf, maxItems, "ALL");
}
// Retrieve the number and locations of all SMS messages.
int A6lib::getSMSLocsOfType(int* buf, int maxItems, String type) {
String seqStart = "+CMGL: ";
String response = "";
String command = "AT+CMGL=\"";
command += type;
command += "\"";
// Issue the command and wait for the response.
byte status = A6command(command.c_str(), "\xff\r\nOK\r\n", "\r\nOK\r\n", A6_CMD_TIMEOUT, 2, &response);
int seqStartLen = seqStart.length();
int responseLen = response.length();
int index, occurrences = 0;
// Start looking for the +CMGL string.
for (int i = 0; i < (responseLen - seqStartLen); i++) {
// If we found a response and it's less than occurrences, add it.
if (response.substring(i, i + seqStartLen) == seqStart && occurrences < maxItems) {
// Parse the position out of the reply.
sscanf(response.substring(i, i + 12).c_str(), "+CMGL: %u,%*s", &index);
buf[occurrences] = index;
occurrences++;
}
}
return occurrences;
}
// Return the SMS at index.
SMSmessage A6lib::readSMS(int index) {
String response = "";
char buffer[30];
// Issue the command and wait for the response.
sprintf(buffer, "AT+CMGR=%d", index);
A6command(buffer, "\xff\r\nOK\r\n", "\r\nOK\r\n", A6_CMD_TIMEOUT, 2, &response);
char message[200];
char number[50];
char date[50];
char type[10];
int respStart = 0, matched = 0;
SMSmessage sms = (const struct SMSmessage) {
"", "", ""
};
// Parse the response if it contains a valid +CLCC.
respStart = response.indexOf("+CMGR");
if (respStart >= 0) {
// Parse the message header.
matched = sscanf(response.substring(respStart).c_str(), "+CMGR: \"REC %s\",\"%s\",,\"%s\"\r\n", type, number, date);
sms.number = String(number);
sms.date = String(date);
// The rest is the message, extract it.
sms.message = response.substring(strlen(type) + strlen(number) + strlen(date) + 24, response.length() - 8);
}
return sms;
}
// Delete the SMS at index.
byte A6lib::deleteSMS(int index) {
char buffer[20];
sprintf(buffer, "AT+CMGD=%d", index);
return A6command(buffer, "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
}
// Delete SMS with special flags
byte A6lib::deleteSMS(int index, int flag) {
char buffer[20];
String command = "AT+CMGD=";
command += String(index);
command += ",";
command += String(flag);
return A6command(command.c_str(), "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
} // AT+CMGD=1,4 delete all SMS from the storage area
// Set the SMS charset.
byte A6lib::setSMScharset(String charset) {
char buffer[30];
sprintf(buffer, "AT+CSCS=\"%s\"", charset.c_str());
return A6command(buffer, "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
}
// Set the volume for the speaker. level should be a number between 5 and
// 8 inclusive.
void A6lib::setVol(byte level) {
char buffer[30];
// level should be between 5 and 8.
level = _min(_max(level, 5), 8);
sprintf(buffer, "AT+CLVL=%d", level);
A6command(buffer, "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
}
// Enable the speaker, rather than the headphones. Pass 0 to route audio through
// headphones, 1 through speaker.
void A6lib::enableSpeaker(byte enable) {
char buffer[30];
// enable should be between 0 and 1.
enable = _min(_max(enable, 0), 1);
sprintf(buffer, "AT+SNFS=%d", enable);
A6command(buffer, "OK", "yy", A6_CMD_TIMEOUT, 2, NULL);
}
/////////////////////////////////////////////
// Private methods.
//
// Autodetect the connection rate.
long A6lib::detectRate() {
unsigned long rate = 0;
unsigned long rates[] = {9600, 115200};
// Try to autodetect the rate.
logln("Autodetecting connection rate...");
for (int i = 0; i < countof(rates); i++) {
rate = rates[i];
A6conn->begin(rate);
log("Trying rate ");
log(rate);
logln("...");
delay(100);
if (A6command("\rAT", "OK", "+CME", 2000, 2, NULL) == A6_OK) {
return rate;
}
}
logln("Couldn't detect the rate.");
return A6_NOTOK;
}
// Set the A6 baud rate.
char A6lib::setRate(long baudRate) {
int rate = 0;
rate = detectRate();
if (rate == A6_NOTOK) {
return A6_NOTOK;
}
// The rate is already the desired rate, return.
//if (rate == baudRate) return OK;
logln("Setting baud rate on the module...");
// Change the rate to the requested.
char buffer[30];
sprintf(buffer, "AT+IPR=%d", baudRate);
A6command(buffer, "OK", "+IPR=", A6_CMD_TIMEOUT, 3, NULL);
logln("Switching to the new rate...");
// Begin the connection again at the requested rate.
A6conn->begin(baudRate);
logln("Rate set.");
return A6_OK;
}
// Read some data from the A6 in a non-blocking manner.
String A6lib::read() {
String reply = "";
if (A6conn->available()) {
reply = A6conn->readString();
}
// XXX: Replace NULs with \xff so we can match on them.
for (int x = 0; x < reply.length(); x++) {
if (reply.charAt(x) == 0) {
reply.setCharAt(x, 255);
}
}
return reply;
}
// Issue a command.
byte A6lib::A6command(const char *command, const char *resp1, const char *resp2, int timeout, int repetitions, String *response) {
byte returnValue = A6_NOTOK;
byte count = 0;
// Get rid of any buffered output.
A6conn->flush();
while (count < repetitions && returnValue != A6_OK) {
log("Issuing command: ");
logln(command);
A6conn->write(command);
A6conn->write('\r');
if (A6waitFor(resp1, resp2, timeout, response) == A6_OK) {
returnValue = A6_OK;
} else {
returnValue = A6_NOTOK;
}
count++;
}
return returnValue;
}
// Wait for responses.
byte A6lib::A6waitFor(const char *resp1, const char *resp2, int timeout, String *response) {
unsigned long entry = millis();
int count = 0;
String reply = "";
byte retVal = 99;
do {
reply += read();
#ifdef ESP8266
yield();
#endif
} while (((reply.indexOf(resp1) + reply.indexOf(resp2)) == -2) && ((millis() - entry) < timeout));
if (reply != "") {
log("Reply in ");
log((millis() - entry));
log(" ms: ");
logln(reply);
}
if (response != NULL) {
*response = reply;
}
if ((millis() - entry) >= timeout) {
retVal = A6_TIMEOUT;
logln("Timed out.");
} else {
if (reply.indexOf(resp1) + reply.indexOf(resp2) > -2) {
logln("Reply OK.");
retVal = A6_OK;
} else {
logln("Reply NOT OK.");
retVal = A6_NOTOK;
}
}
return retVal;
}

View File

@@ -1,111 +0,0 @@
#ifndef A6lib_h
#define A6lib_h
#include <Arduino.h>
#include "SoftwareSerial.h"
#ifdef DEBUG
#define log(msg) Serial.print(msg)
#define logln(msg) Serial.println(msg)
#else
#define log(msg)
#define logln(msg)
#endif
#define countof(a) (sizeof(a) / sizeof(a[0]))
#define A6_OK 0
#define A6_NOTOK 1
#define A6_TIMEOUT 2
#define A6_FAILURE 3
#define A6_CMD_TIMEOUT 5000
enum call_direction {
DIR_OUTGOING = 0,
DIR_INCOMING = 1
};
enum call_state {
CALL_ACTIVE = 0,
CALL_HELD = 1,
CALL_DIALING = 2,
CALL_ALERTING = 3,
CALL_INCOMING = 4,
CALL_WAITING = 5,
CALL_RELEASE = 7
};
enum call_mode {
MODE_VOICE = 0,
MODE_DATA = 1,
MODE_FAX = 2,
MODE_VOICE_THEN_DATA_VMODE = 3,
MODE_VOICE_AND_DATA_VMODE = 4,
MODE_VOICE_AND_FAX_VMODE = 5,
MODE_VOICE_THEN_DATA_DMODE = 6,
MODE_VOICE_AND_DATA_DMODE = 7,
MODE_VOICE_AND_FAX_FMODE = 8,
MODE_UNKNOWN = 9
};
struct SMSmessage {
String number;
String date;
String message;
};
struct callInfo {
int index;
call_direction direction;
call_state state;
call_mode mode;
int multiparty;
String number;
int type;
};
class A6lib {
public:
A6lib(int transmitPin, int receivePin);
~A6lib();
byte begin(long baudRate);
byte blockUntilReady(long baudRate);
void powerCycle(int pin);
void powerOn(int pin);
void powerOff(int pin);
void dial(String number);
void redial();
void answer();
void hangUp();
callInfo checkCallStatus();
int getSignalStrength();
byte sendSMS(String number, String text);
int getUnreadSMSLocs(int* buf, int maxItems);
int getSMSLocs(int* buf, int maxItems);
int getSMSLocsOfType(int* buf, int maxItems, String type);
SMSmessage readSMS(int index);
byte deleteSMS(int index);
byte deleteSMS(int index, int flag);
byte setSMScharset(String charset);
void setVol(byte level);
void enableSpeaker(byte enable);
String getRealTimeClock();
SoftwareSerial *A6conn;
private:
String read();
byte A6command(const char *command, const char *resp1, const char *resp2, int timeout, int repetitions, String *response);
byte A6waitFor(const char *resp1, const char *resp2, int timeout, String *response);
long detectRate();
char setRate(long baudRate);
};
#endif

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2016 Stavros Korokithakis
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,65 +0,0 @@
# A6lib
An ESP8266/Arduino library for communicating with the AI-Thinker A6 GSM module.
It will probably also work with other GSM modules that use the AT command set,
like the SIM900.
## Details
This library is an adaptation of
[this sample module](https://github.com/SensorsIot/A6-GSM-Module). It is still
very incomplete, but at least it works somewhat. Please feel free to issue pull
requests to improve it.
## Usage
If you have the A6 breakout board, connect the Tx and Rx pins to your ESP8266.
The example assumes the TX pin is connected to D5 and the RX to D6. A6lib can
power-cycle the module if you connect a MOSFET to a pin and control the A6's
power supply with it.
For a sample circuit that uses this library, have a look at [the A6/ESP8266
breakout board](https://gitlab.com/stavros/A6-ESP8266-breakout/) I designed.
The A6's PWR pin should be permanently connected to Vcc (if you think that's
wrong or know a better way, please open an issue).
The code looks something like this:
~~~
// Instantiate the class with Tx, Rx (remember to swap them when connecting to
the A6, i.e. connect the A6's Rx pin to D6).
A6lib A6c(D6, D5);
// Initialize the modem, rebooting it if it fails to become ready.
do {
// Power-cycle the module to reset it.
A6c.powerCycle(D0);
} while (A6c.blockUntilReady(9600) != A6_OK);
// Start and place a call.
A6c.dial("1234567890");
delay(8000);
A6c.hangUp();
delay(8000);
A6c.redial();
delay(8000);
// Send a message.
A6c.sendSMS("+1234567890", "Hello there!");
// Get an SMS message from memory.
SMSmessage sms = A6c.readSMS(3);
// Delete an SMS message.
A6c.deleteSMS(3);
callInfo cinfo = A6c.checkCallStatus();
// This will be the calling number, "1234567890".
cinfo.number;
~~~
This library doesn't currently include any code to connect to the internet, but
a PR adding that would be very welcome.

View File

@@ -1,44 +0,0 @@
#include <A6lib.h>
#ifndef ESP8266
#define D0 0
#define D5 8
#define D6 7
#endif
// Instantiate the library with TxPin, RxPin.
A6lib A6l(D6, D5);
void setup() {
Serial.begin(115200);
delay(1000);
// Power-cycle the module to reset it.
A6l.powerCycle(D0);
A6l.blockUntilReady(9600);
}
void loop() {
Serial.println("Checking call status...");
callInfo cinfo = A6l.checkCallStatus();
Serial.println("Call status checked.");
int sigStrength = A6l.getSignalStrength();
Serial.print("Signal strength percentage: ");
Serial.println(sigStrength);
delay(5000);
if (cinfo.number != NULL) {
if (cinfo.direction == DIR_INCOMING && cinfo.number == "919999999999") {
A6l.answer();
} else {
A6l.hangUp();
}
delay(1000);
} else {
Serial.println("No number yet.");
delay(1000);
}
}

View File

@@ -1,30 +0,0 @@
#include <A6lib.h>
#ifndef ESP8266
#define D0 0
#define D5 8
#define D6 7
#endif
// Instantiate the library with TxPin, RxPin.
A6lib A6l(D6, D5);
void setup() {
Serial.begin(115200);
delay(1000);
// Power-cycle the module to reset it.
A6l.powerCycle(D0);
A6l.blockUntilReady(9600);
}
void loop() {
// Relay things between Serial and the module's SoftSerial.
while (A6l.A6conn->available() > 0) {
Serial.write(A6l.A6conn->read());
}
while (Serial.available() > 0) {
A6l.A6conn->write(Serial.read());
}
}

View File

@@ -1,51 +0,0 @@
#include <A6lib.h>
#ifdef ESP8266
#define D0 0
#define D5 8
#define D6 7
#endif
// Instantiate the library with TxPin, RxPin.
A6lib A6l(D6, D5);
int unreadSMSLocs[30] = {0};
int unreadSMSNum = 0;
SMSmessage sms;
void setup() {
Serial.begin(115200);
delay(1000);
// Power-cycle the module to reset it.
A6l.powerCycle(D0);
A6l.blockUntilReady(9600);
}
void loop() {
String myNumber = "+1132352890";
callInfo cinfo = A6l.checkCallStatus();
if (cinfo.direction == DIR_INCOMING) {
if (myNumber.endsWith(cinfo.number)) {
// If the number that sent the SMS is ours, reply.
A6l.sendSMS(myNumber, "I can't come to the phone right now, I'm a machine.");
A6l.hangUp();
}
// Get the memory locations of unread SMS messages.
unreadSMSNum = A6l.getUnreadSMSLocs(unreadSMSLocs, 30);
for (int i = 0; i < unreadSMSNum; i++) {
Serial.print("New message at index: ");
Serial.println(unreadSMSLocs[i], DEC);
sms = A6l.readSMS(unreadSMSLocs[i]);
Serial.println(sms.number);
Serial.println(sms.date);
Serial.println(sms.message);
}
delay(1000);
}
}

View File

@@ -1,35 +0,0 @@
#######################################
# A6 GSM communication module
# (esp8266)
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
A6lib KEYWORD1
callInfo KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
begin KEYWORD2
powerCycle KEYWORD2
dial KEYWORD2
redial KEYWORD2
hangUp KEYWORD2
checkCallStatus KEYWORD2
getSignalStrength KEYWORD2
sendSMS KEYWORD2
setVol KEYWORD2
enableSpeaker KEYWORD2
A6conn KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################

View File

@@ -1,14 +0,0 @@
{
"name": "A6lib",
"keywords": [
"A6", "GSM", "mobile"
],
"description": "An ESP8266/Arduino library for communicating with the A6 GSM module.",
"repository":
{
"type": "git",
"url": "https://github.com/skorokithakis/A6lib"
},
"frameworks": "arduino",
"platforms": "*"
}

View File

@@ -1,9 +0,0 @@
name=A6lib
version=0.1.3
author=Stavros Korokithakis
maintainer=Stavros Korokithakis (hi@stavros.io)
sentence=An ESP8266/Arduino library for communicating with the A6 GSM module.
paragraph=
category=Communication
url=https://github.com/skorokithakis/A6lib
architectures=*

View File

@@ -1,262 +0,0 @@
/*
* Copyright (c) 2000-2002 Opsycon AB (www.opsycon.se)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Opsycon AB.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <stdio.h>
#include <stdint.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#define MAXLN 200
#define ISSPACE " \t\n\r\f\v\""
size_t strcspn(const char *p, const char *s) {
int i, j;
for (i = 0; p[i]; i++) {
for (j = 0; s[j]; j++) {
if (s[j] == p[i]) {
break;
}
}
if (s[j]) {
break;
}
}
return (i);
}
char * _getbase(char *p, int *basep) {
if (p[0] == '0') {
switch (p[1]) {
case 'x':
*basep = 16;
break;
case 't':
case 'n':
*basep = 10;
break;
case 'o':
*basep = 8;
break;
default:
*basep = 10;
return (p);
}
return (p + 2);
}
*basep = 10;
return (p);
}
/*
* _atob(vp,p,base)
*/
int _atob(uint32_t *vp, char *p, int base) {
uint32_t value, v1, v2;
char *q, tmp[20];
int digit;
if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
base = 16;
p += 2;
}
if (base == 16 && (q = strchr(p, '.')) != 0) {
if (q - p > sizeof(tmp) - 1) {
return (0);
}
strncpy(tmp, p, q - p);
tmp[q - p] = '\0';
if (!_atob(&v1, tmp, 16)) {
return (0);
}
q++;
if (strchr(q, '.')) {
return (0);
}
if (!_atob(&v2, q, 16)) {
return (0);
}
*vp = (v1 << 16) + v2;
return (1);
}
value = *vp = 0;
for (; *p; p++) {
if (*p >= '0' && *p <= '9') {
digit = *p - '0';
} else if (*p >= 'a' && *p <= 'f') {
digit = *p - 'a' + 10;
} else if (*p >= 'A' && *p <= 'F') {
digit = *p - 'A' + 10;
} else {
return (0);
}
if (digit >= base) {
return (0);
}
value *= base;
value += digit;
}
*vp = value;
return (1);
}
/*
* atob(vp,p,base)
* converts p to binary result in vp, rtn 1 on success
*/
int atob(uint32_t *vp, char *p, int base) {
uint32_t v;
if (base == 0) {
p = _getbase(p, &base);
}
if (_atob(&v, p, base)) {
*vp = v;
return (1);
}
return (0);
}
/*
* vsscanf(buf,fmt,ap)
*/
int vsscanf(const char *buf, const char *s, va_list ap) {
uint32_t count, noassign, width, base, lflag;
const char *tc;
char *t, tmp[MAXLN];
count = noassign = width = lflag = 0;
while (*s && *buf) {
while (isspace(*s)) {
s++;
}
if (*s == '%') {
s++;
for (; *s; s++) {
if (strchr("dibouxcsefg%", *s)) {
break;
}
if (*s == '*') {
noassign = 1;
} else if (*s == 'l' || *s == 'L') {
lflag = 1;
} else if (*s >= '1' && *s <= '9') {
for (tc = s; isdigit(*s); s++);
strncpy(tmp, tc, s - tc);
tmp[s - tc] = '\0';
atob(&width, tmp, 10);
s--;
}
}
if (*s == 's') {
while (isspace(*buf)) {
buf++;
}
if (!width) {
width = strcspn(buf, ISSPACE);
}
if (!noassign) {
strncpy(t = va_arg(ap, char *), buf, width);
t[width] = '\0';
}
buf += width;
} else if (*s == 'c') {
if (!width) {
width = 1;
}
if (!noassign) {
strncpy(t = va_arg(ap, char *), buf, width);
t[width] = '\0';
}
buf += width;
} else if (strchr("dobxu", *s)) {
while (isspace(*buf)) {
buf++;
}
if (*s == 'd' || *s == 'u') {
base = 10;
} else if (*s == 'x') {
base = 16;
} else if (*s == 'o') {
base = 8;
} else if (*s == 'b') {
base = 2;
}
if (!width) {
if (isspace(*(s + 1)) || *(s + 1) == 0) {
width = strcspn(buf, ISSPACE);
} else {
width = strchr(buf, *(s + 1)) - buf;
}
}
strncpy(tmp, buf, width);
tmp[width] = '\0';
buf += width;
if (!noassign) {
atob(va_arg(ap, uint32_t *), tmp, base);
}
}
if (!noassign) {
count++;
}
width = noassign = lflag = 0;
s++;
} else {
while (isspace(*buf)) {
buf++;
}
if (*s != *buf) {
break;
} else {
s++, buf++;
}
}
}
return (count);
}
int __attribute__((used)) sscanf(const char *buf, const char *fmt, ...) {
int count;
va_list ap;
va_start(ap, fmt);
count = vsscanf(buf, fmt, ap);
va_end(ap);
return (count);
}

View File

@@ -1,154 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software< /span>
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Update by K. Townsend (Adafruit Industries) for lighter typedefs, and
* extended sensor support to include color, voltage and current */
#ifndef _ADAFRUIT_SENSOR_H
#define _ADAFRUIT_SENSOR_H
#if ARDUINO >= 100
#include "Arduino.h"
#include "Print.h"
#else
#include "WProgram.h"
#endif
/* Intentionally modeled after sensors.h in the Android API:
* https://github.com/android/platform_hardware_libhardware/blob/master/include/hardware/sensors.h */
/* Constants */
#define SENSORS_GRAVITY_EARTH (9.80665F) /**< Earth's gravity in m/s^2 */
#define SENSORS_GRAVITY_MOON (1.6F) /**< The moon's gravity in m/s^2 */
#define SENSORS_GRAVITY_SUN (275.0F) /**< The sun's gravity in m/s^2 */
#define SENSORS_GRAVITY_STANDARD (SENSORS_GRAVITY_EARTH)
#define SENSORS_MAGFIELD_EARTH_MAX (60.0F) /**< Maximum magnetic field on Earth's surface */
#define SENSORS_MAGFIELD_EARTH_MIN (30.0F) /**< Minimum magnetic field on Earth's surface */
#define SENSORS_PRESSURE_SEALEVELHPA (1013.25F) /**< Average sea level pressure is 1013.25 hPa */
#define SENSORS_DPS_TO_RADS (0.017453293F) /**< Degrees/s to rad/s multiplier */
#define SENSORS_GAUSS_TO_MICROTESLA (100) /**< Gauss to micro-Tesla multiplier */
/** Sensor types */
typedef enum
{
SENSOR_TYPE_ACCELEROMETER = (1), /**< Gravity + linear acceleration */
SENSOR_TYPE_MAGNETIC_FIELD = (2),
SENSOR_TYPE_ORIENTATION = (3),
SENSOR_TYPE_GYROSCOPE = (4),
SENSOR_TYPE_LIGHT = (5),
SENSOR_TYPE_PRESSURE = (6),
SENSOR_TYPE_PROXIMITY = (8),
SENSOR_TYPE_GRAVITY = (9),
SENSOR_TYPE_LINEAR_ACCELERATION = (10), /**< Acceleration not including gravity */
SENSOR_TYPE_ROTATION_VECTOR = (11),
SENSOR_TYPE_RELATIVE_HUMIDITY = (12),
SENSOR_TYPE_AMBIENT_TEMPERATURE = (13),
SENSOR_TYPE_VOLTAGE = (15),
SENSOR_TYPE_CURRENT = (16),
SENSOR_TYPE_COLOR = (17)
} sensors_type_t;
/** struct sensors_vec_s is used to return a vector in a common format. */
typedef struct {
union {
float v[3];
struct {
float x;
float y;
float z;
};
/* Orientation sensors */
struct {
float roll; /**< Rotation around the longitudinal axis (the plane body, 'X axis'). Roll is positive and increasing when moving downward. -90°<=roll<=90° */
float pitch; /**< Rotation around the lateral axis (the wing span, 'Y axis'). Pitch is positive and increasing when moving upwards. -180°<=pitch<=180°) */
float heading; /**< Angle between the longitudinal axis (the plane body) and magnetic north, measured clockwise when viewing from the top of the device. 0-359° */
};
};
int8_t status;
uint8_t reserved[3];
} sensors_vec_t;
/** struct sensors_color_s is used to return color data in a common format. */
typedef struct {
union {
float c[3];
/* RGB color space */
struct {
float r; /**< Red component */
float g; /**< Green component */
float b; /**< Blue component */
};
};
uint32_t rgba; /**< 24-bit RGBA value */
} sensors_color_t;
/* Sensor event (36 bytes) */
/** struct sensor_event_s is used to provide a single sensor event in a common format. */
typedef struct
{
int32_t version; /**< must be sizeof(struct sensors_event_t) */
int32_t sensor_id; /**< unique sensor identifier */
int32_t type; /**< sensor type */
int32_t reserved0; /**< reserved */
int32_t timestamp; /**< time is in milliseconds */
union
{
float data[4];
sensors_vec_t acceleration; /**< acceleration values are in meter per second per second (m/s^2) */
sensors_vec_t magnetic; /**< magnetic vector values are in micro-Tesla (uT) */
sensors_vec_t orientation; /**< orientation values are in degrees */
sensors_vec_t gyro; /**< gyroscope values are in rad/s */
float temperature; /**< temperature is in degrees centigrade (Celsius) */
float distance; /**< distance in centimeters */
float light; /**< light in SI lux units */
float pressure; /**< pressure in hectopascal (hPa) */
float relative_humidity; /**< relative humidity in percent */
float current; /**< current in milliamps (mA) */
float voltage; /**< voltage in volts (V) */
sensors_color_t color; /**< color in RGB component values */
};
} sensors_event_t;
/* Sensor details (40 bytes) */
/** struct sensor_s is used to describe basic information about a specific sensor. */
typedef struct
{
char name[12]; /**< sensor name */
int32_t version; /**< version of the hardware + driver */
int32_t sensor_id; /**< unique sensor identifier */
int32_t type; /**< this sensor's type (ex. SENSOR_TYPE_LIGHT) */
float max_value; /**< maximum value of this sensor's value in SI units */
float min_value; /**< minimum value of this sensor's value in SI units */
float resolution; /**< smallest difference between two values reported by this sensor */
int32_t min_delay; /**< min delay in microseconds between events. zero = not a constant rate */
} sensor_t;
class Adafruit_Sensor {
public:
// Constructor(s)
Adafruit_Sensor() {}
virtual ~Adafruit_Sensor() {}
// These must be defined by the subclass
virtual void enableAutoRange(bool enabled) {};
virtual bool getEvent(sensors_event_t*) = 0;
virtual void getSensor(sensor_t*) = 0;
private:
bool _autoRange;
};
#endif

View File

@@ -1,221 +0,0 @@
# Adafruit Unified Sensor Driver #
Many small embedded systems exist to collect data from sensors, analyse the data, and either take an appropriate action or send that sensor data to another system for processing.
One of the many challenges of embedded systems design is the fact that parts you used today may be out of production tomorrow, or system requirements may change and you may need to choose a different sensor down the road.
Creating new drivers is a relatively easy task, but integrating them into existing systems is both error prone and time consuming since sensors rarely use the exact same units of measurement.
By reducing all data to a single **sensors\_event\_t** 'type' and settling on specific, **standardised SI units** for each sensor family the same sensor types return values that are comparable with any other similar sensor. This enables you to switch sensor models with very little impact on the rest of the system, which can help mitigate some of the risks and problems of sensor availability and code reuse.
The unified sensor abstraction layer is also useful for data-logging and data-transmission since you only have one well-known type to log or transmit over the air or wire.
## Unified Sensor Drivers ##
The following drivers are based on the Adafruit Unified Sensor Driver:
**Accelerometers**
- [Adafruit\_ADXL345](https://github.com/adafruit/Adafruit_ADXL345)
- [Adafruit\_LSM303DLHC](https://github.com/adafruit/Adafruit_LSM303DLHC)
- [Adafruit\_MMA8451\_Library](https://github.com/adafruit/Adafruit_MMA8451_Library)
**Gyroscope**
- [Adafruit\_L3GD20\_U](https://github.com/adafruit/Adafruit_L3GD20_U)
**Light**
- [Adafruit\_TSL2561](https://github.com/adafruit/Adafruit_TSL2561)
- [Adafruit\_TSL2591\_Library](https://github.com/adafruit/Adafruit_TSL2591_Library)
**Magnetometers**
- [Adafruit\_LSM303DLHC](https://github.com/adafruit/Adafruit_LSM303DLHC)
- [Adafruit\_HMC5883\_Unified](https://github.com/adafruit/Adafruit_HMC5883_Unified)
**Barometric Pressure**
- [Adafruit\_BMP085\_Unified](https://github.com/adafruit/Adafruit_BMP085_Unified)
- [Adafruit\_BMP183\_Unified\_Library](https://github.com/adafruit/Adafruit_BMP183_Unified_Library)
**Humidity & Temperature**
- [DHT-sensor-library](https://github.com/adafruit/DHT-sensor-library)
**Orientation**
- [Adafruit_BNO055](https://github.com/adafruit/Adafruit_BNO055)
## How Does it Work? ##
Any driver that supports the Adafruit unified sensor abstraction layer will implement the Adafruit\_Sensor base class. There are two main typedefs and one enum defined in Adafruit_Sensor.h that are used to 'abstract' away the sensor details and values:
**Sensor Types (sensors\_type\_t)**
These pre-defined sensor types are used to properly handle the two related typedefs below, and allows us determine what types of units the sensor uses, etc.
```
/** Sensor types */
typedef enum
{
SENSOR_TYPE_ACCELEROMETER = (1),
SENSOR_TYPE_MAGNETIC_FIELD = (2),
SENSOR_TYPE_ORIENTATION = (3),
SENSOR_TYPE_GYROSCOPE = (4),
SENSOR_TYPE_LIGHT = (5),
SENSOR_TYPE_PRESSURE = (6),
SENSOR_TYPE_PROXIMITY = (8),
SENSOR_TYPE_GRAVITY = (9),
SENSOR_TYPE_LINEAR_ACCELERATION = (10),
SENSOR_TYPE_ROTATION_VECTOR = (11),
SENSOR_TYPE_RELATIVE_HUMIDITY = (12),
SENSOR_TYPE_AMBIENT_TEMPERATURE = (13),
SENSOR_TYPE_VOLTAGE = (15),
SENSOR_TYPE_CURRENT = (16),
SENSOR_TYPE_COLOR = (17)
} sensors_type_t;
```
**Sensor Details (sensor\_t)**
This typedef describes the specific capabilities of this sensor, and allows us to know what sensor we are using beneath the abstraction layer.
```
/* Sensor details (40 bytes) */
/** struct sensor_s is used to describe basic information about a specific sensor. */
typedef struct
{
char name[12];
int32_t version;
int32_t sensor_id;
int32_t type;
float max_value;
float min_value;
float resolution;
int32_t min_delay;
} sensor_t;
```
The individual fields are intended to be used as follows:
- **name**: The sensor name or ID, up to a maximum of twelve characters (ex. "MPL115A2")
- **version**: The version of the sensor HW and the driver to allow us to differentiate versions of the board or driver
- **sensor\_id**: A unique sensor identifier that is used to differentiate this specific sensor instance from any others that are present on the system or in the sensor network
- **type**: The sensor type, based on **sensors\_type\_t** in sensors.h
- **max\_value**: The maximum value that this sensor can return (in the appropriate SI unit)
- **min\_value**: The minimum value that this sensor can return (in the appropriate SI unit)
- **resolution**: The smallest difference between two values that this sensor can report (in the appropriate SI unit)
- **min\_delay**: The minimum delay in microseconds between two sensor events, or '0' if there is no constant sensor rate
**Sensor Data/Events (sensors\_event\_t)**
This typedef is used to return sensor data from any sensor supported by the abstraction layer, using standard SI units and scales.
```
/* Sensor event (36 bytes) */
/** struct sensor_event_s is used to provide a single sensor event in a common format. */
typedef struct
{
int32_t version;
int32_t sensor_id;
int32_t type;
int32_t reserved0;
int32_t timestamp;
union
{
float data[4];
sensors_vec_t acceleration;
sensors_vec_t magnetic;
sensors_vec_t orientation;
sensors_vec_t gyro;
float temperature;
float distance;
float light;
float pressure;
float relative_humidity;
float current;
float voltage;
sensors_color_t color;
};
} sensors_event_t;
```
It includes the following fields:
- **version**: Contain 'sizeof(sensors\_event\_t)' to identify which version of the API we're using in case this changes in the future
- **sensor\_id**: A unique sensor identifier that is used to differentiate this specific sensor instance from any others that are present on the system or in the sensor network (must match the sensor\_id value in the corresponding sensor\_t enum above!)
- **type**: the sensor type, based on **sensors\_type\_t** in sensors.h
- **timestamp**: time in milliseconds when the sensor value was read
- **data[4]**: An array of four 32-bit values that allows us to encapsulate any type of sensor data via a simple union (further described below)
**Required Functions**
In addition to the two standard types and the sensor type enum, all drivers based on Adafruit_Sensor must also implement the following two functions:
```
bool getEvent(sensors_event_t*);
```
Calling this function will populate the supplied sensors\_event\_t reference with the latest available sensor data. You should call this function as often as you want to update your data.
```
void getSensor(sensor_t*);
```
Calling this function will provide some basic information about the sensor (the sensor name, driver version, min and max values, etc.
**Standardised SI values for sensors\_event\_t**
A key part of the abstraction layer is the standardisation of values on SI units of a particular scale, which is accomplished via the data[4] union in sensors\_event\_t above. This 16 byte union includes fields for each main sensor type, and uses the following SI units and scales:
- **acceleration**: values are in **meter per second per second** (m/s^2)
- **magnetic**: values are in **micro-Tesla** (uT)
- **orientation**: values are in **degrees**
- **gyro**: values are in **rad/s**
- **temperature**: values in **degrees centigrade** (Celsius)
- **distance**: values are in **centimeters**
- **light**: values are in **SI lux** units
- **pressure**: values are in **hectopascal** (hPa)
- **relative\_humidity**: values are in **percent**
- **current**: values are in **milliamps** (mA)
- **voltage**: values are in **volts** (V)
- **color**: values are in 0..1.0 RGB channel luminosity and 32-bit RGBA format
## The Unified Driver Abstraction Layer in Practice ##
Using the unified sensor abstraction layer is relatively easy once a compliant driver has been created.
Every compliant sensor can now be read using a single, well-known 'type' (sensors\_event\_t), and there is a standardised way of interrogating a sensor about its specific capabilities (via sensor\_t).
An example of reading the [TSL2561](https://github.com/adafruit/Adafruit_TSL2561) light sensor can be seen below:
```
Adafruit_TSL2561 tsl = Adafruit_TSL2561(TSL2561_ADDR_FLOAT, 12345);
...
/* Get a new sensor event */
sensors_event_t event;
tsl.getEvent(&event);
/* Display the results (light is measured in lux) */
if (event.light)
{
Serial.print(event.light); Serial.println(" lux");
}
else
{
/* If event.light = 0 lux the sensor is probably saturated
and no reliable data could be generated! */
Serial.println("Sensor overload");
}
```
Similarly, we can get the basic technical capabilities of this sensor with the following code:
```
sensor_t sensor;
sensor_t sensor;
tsl.getSensor(&sensor);
/* Display the sensor details */
Serial.println("------------------------------------");
Serial.print ("Sensor: "); Serial.println(sensor.name);
Serial.print ("Driver Ver: "); Serial.println(sensor.version);
Serial.print ("Unique ID: "); Serial.println(sensor.sensor_id);
Serial.print ("Max Value: "); Serial.print(sensor.max_value); Serial.println(" lux");
Serial.print ("Min Value: "); Serial.print(sensor.min_value); Serial.println(" lux");
Serial.print ("Resolution: "); Serial.print(sensor.resolution); Serial.println(" lux");
Serial.println("------------------------------------");
Serial.println("");
```

View File

@@ -1,9 +0,0 @@
name=Adafruit Unified Sensor
version=1.0.2
author=Adafruit <info@adafruit.com>
maintainer=Adafruit <info@adafruit.com>
sentence=Required for all Adafruit Unified Sensor based libraries.
paragraph=A unified sensor abstraction layer used by many Adafruit sensor libraries.
category=Sensors
url=https://github.com/adafruit/Adafruit_Sensor
architectures=*

View File

@@ -1,46 +0,0 @@
Thank you for opening an issue on an Adafruit Arduino library repository. To
improve the speed of resolution please review the following guidelines and
common troubleshooting steps below before creating the issue:
- **Do not use GitHub issues for troubleshooting projects and issues.** Instead use
the forums at http://forums.adafruit.com to ask questions and troubleshoot why
something isn't working as expected. In many cases the problem is a common issue
that you will more quickly receive help from the forum community. GitHub issues
are meant for known defects in the code. If you don't know if there is a defect
in the code then start with troubleshooting on the forum first.
- **If following a tutorial or guide be sure you didn't miss a step.** Carefully
check all of the steps and commands to run have been followed. Consult the
forum if you're unsure or have questions about steps in a guide/tutorial.
- **For Arduino projects check these very common issues to ensure they don't apply**:
- For uploading sketches or communicating with the board make sure you're using
a **USB data cable** and **not** a **USB charge-only cable**. It is sometimes
very hard to tell the difference between a data and charge cable! Try using the
cable with other devices or swapping to another cable to confirm it is not
the problem.
- **Be sure you are supplying adequate power to the board.** Check the specs of
your board and plug in an external power supply. In many cases just
plugging a board into your computer is not enough to power it and other
peripherals.
- **Double check all soldering joints and connections.** Flakey connections
cause many mysterious problems. See the [guide to excellent soldering](https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools) for examples of good solder joints.
- **Ensure you are using an official Arduino or Adafruit board.** We can't
guarantee a clone board will have the same functionality and work as expected
with this code and don't support them.
If you're sure this issue is a defect in the code and checked the steps above
please fill in the following fields to provide enough troubleshooting information.
You may delete the guideline and text above to just leave the following details:
- Arduino board: **INSERT ARDUINO BOARD NAME/TYPE HERE**
- Arduino IDE version (found in Arduino -> About Arduino menu): **INSERT ARDUINO
VERSION HERE**
- List the steps to reproduce the problem below (if possible attach a sketch or
copy the sketch code in too): **LIST REPRO STEPS BELOW**

View File

@@ -1,26 +0,0 @@
Thank you for creating a pull request to contribute to Adafruit's GitHub code!
Before you open the request please review the following guidelines and tips to
help it be more easily integrated:
- **Describe the scope of your change--i.e. what the change does and what parts
of the code were modified.** This will help us understand any risks of integrating
the code.
- **Describe any known limitations with your change.** For example if the change
doesn't apply to a supported platform of the library please mention it.
- **Please run any tests or examples that can exercise your modified code.** We
strive to not break users of the code and running tests/examples helps with this
process.
Thank you again for contributing! We will try to test and integrate the change
as soon as we can, but be aware we have many GitHub repositories to manage and
can't immediately respond to every request. There is no need to bump or check in
on a pull request (it will clutter the discussion of the request).
Also don't be worried if the request is closed or not integrated--sometimes the
priorities of Adafruit's GitHub code (education, ease of use) might not match the
priorities of the pull request. Don't fret, the open source community thrives on
forks and GitHub makes it easy to keep your changes in a forked repo.
After reviewing the guidelines above you can delete this text from the pull request.

View File

@@ -1,27 +0,0 @@
language: c
sudo: false
# Blacklist
branches:
except:
- gh-pages
env:
global:
- PRETTYNAME="Adafruit TSL2561 Arduino Library"
# Optional, will default to "$TRAVIS_BUILD_DIR/Doxyfile"
# - DOXYFILE: $TRAVIS_BUILD_DIR/Doxyfile
before_install:
- source <(curl -SLs https://raw.githubusercontent.com/adafruit/travis-ci-arduino/master/install.sh)
install:
- arduino --install-library "Adafruit Unified Sensor"
script:
- build_main_platforms
# Generate and deploy documentation
after_success:
- source <(curl -SLs https://raw.githubusercontent.com/adafruit/travis-ci-arduino/master/library_check.sh)
- source <(curl -SLs https://raw.githubusercontent.com/adafruit/travis-ci-arduino/master/doxy_gen_and_deploy.sh)

View File

@@ -1,575 +0,0 @@
/*!
* @file Adafruit_TSL2561_U.cpp
*
* @mainpage Adafruit TSL2561 Light/Lux sensor driver
*
* @section intro_sec Introduction
*
* This is the documentation for Adafruit's TSL2561 driver for the
* Arduino platform. It is designed specifically to work with the
* Adafruit TSL2561 breakout: http://www.adafruit.com/products/439
*
* These sensors use I2C to communicate, 2 pins (SCL+SDA) are required
* to interface with the breakout.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* @section dependencies Dependencies
*
* This library depends on <a href="https://github.com/adafruit/Adafruit_Sensor">
* Adafruit_Sensor</a> being present on your system. Please make sure you have
* installed the latest version before using this library.
*
* @section author Author
*
* Written by Kevin "KTOWN" Townsend for Adafruit Industries.
*
* @section license License
*
* BSD license, all text here must be included in any redistribution.
*
* @section HISTORY
*
* v2.0 - Rewrote driver for Adafruit_Sensor and Auto-Gain support, and
* added lux clipping check (returns 0 lux on sensor saturation)
* v1.0 - First release (previously TSL2561)
*/
/**************************************************************************/
#include "Adafruit_TSL2561_U.h"
/*========================================================================*/
/* CONSTRUCTORS */
/*========================================================================*/
/**************************************************************************/
/*!
@brief Constructor
@param addr The I2C address this chip can be found on, 0x29, 0x39 or 0x49
@param sensorID An optional ID that will be placed in sensor events to help
keep track if you have many sensors in use
*/
/**************************************************************************/
Adafruit_TSL2561_Unified::Adafruit_TSL2561_Unified(uint8_t addr, int32_t sensorID)
{
_addr = addr;
_tsl2561Initialised = false;
_tsl2561AutoGain = false;
_tsl2561IntegrationTime = TSL2561_INTEGRATIONTIME_13MS;
_tsl2561Gain = TSL2561_GAIN_1X;
_tsl2561SensorID = sensorID;
}
/*========================================================================*/
/* PUBLIC FUNCTIONS */
/*========================================================================*/
/**************************************************************************/
/*!
@brief Initializes I2C and configures the sensor with default Wire I2C
(call this function before doing anything else)
@returns True if sensor is found and initialized, false otherwise.
*/
/**************************************************************************/
boolean Adafruit_TSL2561_Unified::begin()
{
_i2c = &Wire;
_i2c->begin();
return init();
}
/**************************************************************************/
/*!
@brief Initializes I2C and configures the sensor with provided I2C device
(call this function before doing anything else)
@param theWire A pointer to any I2C interface (e.g. &Wire1)
@returns True if sensor is found and initialized, false otherwise.
*/
/**************************************************************************/
boolean Adafruit_TSL2561_Unified::begin(TwoWire *theWire)
{
_i2c = theWire;
_i2c-> begin();
return init();
}
/**************************************************************************/
/*!
@brief Initializes I2C connection and settings.
Attempts to determine if the sensor is contactable, then sets up a default
integration time and gain. Then powers down the chip.
@returns True if sensor is found and initialized, false otherwise.
*/
/**************************************************************************/
boolean Adafruit_TSL2561_Unified::init()
{
/* Make sure we're actually connected */
uint8_t x = read8(TSL2561_REGISTER_ID);
if (x & 0xF0 != 0x10) { // ID code for TSL2561
return false;
}
_tsl2561Initialised = true;
/* Set default integration time and gain */
setIntegrationTime(_tsl2561IntegrationTime);
setGain(_tsl2561Gain);
/* Note: by default, the device is in power down mode on bootup */
disable();
return true;
}
/**************************************************************************/
/*!
@brief Enables or disables the auto-gain settings when reading
data from the sensor
@param enable Set to true to enable, False to disable
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::enableAutoRange(bool enable)
{
_tsl2561AutoGain = enable ? true : false;
}
/**************************************************************************/
/*!
@brief Sets the integration time for the TSL2561. Higher time means
more light captured (better for low light conditions) but will
take longer to run readings.
@param time The amount of time we'd like to add up values
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::setIntegrationTime(tsl2561IntegrationTime_t time)
{
if (!_tsl2561Initialised) begin();
/* Enable the device by setting the control bit to 0x03 */
enable();
/* Update the timing register */
write8(TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, time | _tsl2561Gain);
/* Update value placeholders */
_tsl2561IntegrationTime = time;
/* Turn the device off to save power */
disable();
}
/**************************************************************************/
/*!
@brief Adjusts the gain on the TSL2561 (adjusts the sensitivity to light)
@param gain The value we'd like to set the gain to
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::setGain(tsl2561Gain_t gain)
{
if (!_tsl2561Initialised) begin();
/* Enable the device by setting the control bit to 0x03 */
enable();
/* Update the timing register */
write8(TSL2561_COMMAND_BIT | TSL2561_REGISTER_TIMING, _tsl2561IntegrationTime | gain);
/* Update value placeholders */
_tsl2561Gain = gain;
/* Turn the device off to save power */
disable();
}
/**************************************************************************/
/*!
@brief Gets the broadband (mixed lighting) and IR only values from
the TSL2561, adjusting gain if auto-gain is enabled
@param broadband Pointer to a uint16_t we will fill with a sensor
reading from the IR+visible light diode.
@param ir Pointer to a uint16_t we will fill with a sensor the
IR-only light diode.
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::getLuminosity (uint16_t *broadband, uint16_t *ir)
{
bool valid = false;
if (!_tsl2561Initialised) begin();
/* If Auto gain disabled get a single reading and continue */
if(!_tsl2561AutoGain)
{
getData (broadband, ir);
return;
}
/* Read data until we find a valid range */
bool _agcCheck = false;
do
{
uint16_t _b, _ir;
uint16_t _hi, _lo;
tsl2561IntegrationTime_t _it = _tsl2561IntegrationTime;
/* Get the hi/low threshold for the current integration time */
switch(_it)
{
case TSL2561_INTEGRATIONTIME_13MS:
_hi = TSL2561_AGC_THI_13MS;
_lo = TSL2561_AGC_TLO_13MS;
break;
case TSL2561_INTEGRATIONTIME_101MS:
_hi = TSL2561_AGC_THI_101MS;
_lo = TSL2561_AGC_TLO_101MS;
break;
default:
_hi = TSL2561_AGC_THI_402MS;
_lo = TSL2561_AGC_TLO_402MS;
break;
}
getData(&_b, &_ir);
/* Run an auto-gain check if we haven't already done so ... */
if (!_agcCheck)
{
if ((_b < _lo) && (_tsl2561Gain == TSL2561_GAIN_1X))
{
/* Increase the gain and try again */
setGain(TSL2561_GAIN_16X);
/* Drop the previous conversion results */
getData(&_b, &_ir);
/* Set a flag to indicate we've adjusted the gain */
_agcCheck = true;
}
else if ((_b > _hi) && (_tsl2561Gain == TSL2561_GAIN_16X))
{
/* Drop gain to 1x and try again */
setGain(TSL2561_GAIN_1X);
/* Drop the previous conversion results */
getData(&_b, &_ir);
/* Set a flag to indicate we've adjusted the gain */
_agcCheck = true;
}
else
{
/* Nothing to look at here, keep moving ....
Reading is either valid, or we're already at the chips limits */
*broadband = _b;
*ir = _ir;
valid = true;
}
}
else
{
/* If we've already adjusted the gain once, just return the new results.
This avoids endless loops where a value is at one extreme pre-gain,
and the the other extreme post-gain */
*broadband = _b;
*ir = _ir;
valid = true;
}
} while (!valid);
}
/**************************************************************************/
/*!
Enables the device
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::enable(void)
{
/* Enable the device by setting the control bit to 0x03 */
write8(TSL2561_COMMAND_BIT | TSL2561_REGISTER_CONTROL, TSL2561_CONTROL_POWERON);
}
/**************************************************************************/
/*!
Disables the device (putting it in lower power sleep mode)
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::disable(void)
{
/* Turn the device off to save power */
write8(TSL2561_COMMAND_BIT | TSL2561_REGISTER_CONTROL, TSL2561_CONTROL_POWEROFF);
}
/**************************************************************************/
/*!
Private function to read luminosity on both channels
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::getData (uint16_t *broadband, uint16_t *ir)
{
/* Enable the device by setting the control bit to 0x03 */
enable();
/* Wait x ms for ADC to complete */
switch (_tsl2561IntegrationTime)
{
case TSL2561_INTEGRATIONTIME_13MS:
delay(TSL2561_DELAY_INTTIME_13MS); // KTOWN: Was 14ms
break;
case TSL2561_INTEGRATIONTIME_101MS:
delay(TSL2561_DELAY_INTTIME_101MS); // KTOWN: Was 102ms
break;
default:
delay(TSL2561_DELAY_INTTIME_402MS); // KTOWN: Was 403ms
break;
}
/* Reads a two byte value from channel 0 (visible + infrared) */
*broadband = read16(TSL2561_COMMAND_BIT | TSL2561_WORD_BIT | TSL2561_REGISTER_CHAN0_LOW);
/* Reads a two byte value from channel 1 (infrared) */
*ir = read16(TSL2561_COMMAND_BIT | TSL2561_WORD_BIT | TSL2561_REGISTER_CHAN1_LOW);
/* Turn the device off to save power */
disable();
}
/**************************************************************************/
/*!
@brief Converts the raw sensor values to the standard SI lux equivalent.
@param broadband The 16-bit sensor reading from the IR+visible light diode.
@param ir The 16-bit sensor reading from the IR-only light diode.
@returns The integer Lux value we calcuated.
Returns 0 if the sensor is saturated and the values are
unreliable, or 65536 if the sensor is saturated.
*/
/**************************************************************************/
/**************************************************************************/
/*!
Returns
*/
/**************************************************************************/
uint32_t Adafruit_TSL2561_Unified::calculateLux(uint16_t broadband, uint16_t ir)
{
unsigned long chScale;
unsigned long channel1;
unsigned long channel0;
/* Make sure the sensor isn't saturated! */
uint16_t clipThreshold;
switch (_tsl2561IntegrationTime)
{
case TSL2561_INTEGRATIONTIME_13MS:
clipThreshold = TSL2561_CLIPPING_13MS;
break;
case TSL2561_INTEGRATIONTIME_101MS:
clipThreshold = TSL2561_CLIPPING_101MS;
break;
default:
clipThreshold = TSL2561_CLIPPING_402MS;
break;
}
/* Return 65536 lux if the sensor is saturated */
if ((broadband > clipThreshold) || (ir > clipThreshold))
{
return 65536;
}
/* Get the correct scale depending on the intergration time */
switch (_tsl2561IntegrationTime)
{
case TSL2561_INTEGRATIONTIME_13MS:
chScale = TSL2561_LUX_CHSCALE_TINT0;
break;
case TSL2561_INTEGRATIONTIME_101MS:
chScale = TSL2561_LUX_CHSCALE_TINT1;
break;
default: /* No scaling ... integration time = 402ms */
chScale = (1 << TSL2561_LUX_CHSCALE);
break;
}
/* Scale for gain (1x or 16x) */
if (!_tsl2561Gain) chScale = chScale << 4;
/* Scale the channel values */
channel0 = (broadband * chScale) >> TSL2561_LUX_CHSCALE;
channel1 = (ir * chScale) >> TSL2561_LUX_CHSCALE;
/* Find the ratio of the channel values (Channel1/Channel0) */
unsigned long ratio1 = 0;
if (channel0 != 0) ratio1 = (channel1 << (TSL2561_LUX_RATIOSCALE+1)) / channel0;
/* round the ratio value */
unsigned long ratio = (ratio1 + 1) >> 1;
unsigned int b, m;
#ifdef TSL2561_PACKAGE_CS
if ((ratio >= 0) && (ratio <= TSL2561_LUX_K1C))
{b=TSL2561_LUX_B1C; m=TSL2561_LUX_M1C;}
else if (ratio <= TSL2561_LUX_K2C)
{b=TSL2561_LUX_B2C; m=TSL2561_LUX_M2C;}
else if (ratio <= TSL2561_LUX_K3C)
{b=TSL2561_LUX_B3C; m=TSL2561_LUX_M3C;}
else if (ratio <= TSL2561_LUX_K4C)
{b=TSL2561_LUX_B4C; m=TSL2561_LUX_M4C;}
else if (ratio <= TSL2561_LUX_K5C)
{b=TSL2561_LUX_B5C; m=TSL2561_LUX_M5C;}
else if (ratio <= TSL2561_LUX_K6C)
{b=TSL2561_LUX_B6C; m=TSL2561_LUX_M6C;}
else if (ratio <= TSL2561_LUX_K7C)
{b=TSL2561_LUX_B7C; m=TSL2561_LUX_M7C;}
else if (ratio > TSL2561_LUX_K8C)
{b=TSL2561_LUX_B8C; m=TSL2561_LUX_M8C;}
#else
if ((ratio >= 0) && (ratio <= TSL2561_LUX_K1T))
{b=TSL2561_LUX_B1T; m=TSL2561_LUX_M1T;}
else if (ratio <= TSL2561_LUX_K2T)
{b=TSL2561_LUX_B2T; m=TSL2561_LUX_M2T;}
else if (ratio <= TSL2561_LUX_K3T)
{b=TSL2561_LUX_B3T; m=TSL2561_LUX_M3T;}
else if (ratio <= TSL2561_LUX_K4T)
{b=TSL2561_LUX_B4T; m=TSL2561_LUX_M4T;}
else if (ratio <= TSL2561_LUX_K5T)
{b=TSL2561_LUX_B5T; m=TSL2561_LUX_M5T;}
else if (ratio <= TSL2561_LUX_K6T)
{b=TSL2561_LUX_B6T; m=TSL2561_LUX_M6T;}
else if (ratio <= TSL2561_LUX_K7T)
{b=TSL2561_LUX_B7T; m=TSL2561_LUX_M7T;}
else if (ratio > TSL2561_LUX_K8T)
{b=TSL2561_LUX_B8T; m=TSL2561_LUX_M8T;}
#endif
unsigned long temp;
temp = ((channel0 * b) - (channel1 * m));
/* Do not allow negative lux value */
if (temp < 0) temp = 0;
/* Round lsb (2^(LUX_SCALE-1)) */
temp += (1 << (TSL2561_LUX_LUXSCALE-1));
/* Strip off fractional portion */
uint32_t lux = temp >> TSL2561_LUX_LUXSCALE;
/* Signal I2C had no errors */
return lux;
}
/**************************************************************************/
/*!
@brief Gets the most recent sensor event
@param event Pointer to a sensor_event_t type that will be filled
with the lux value, timestamp, data type and sensor ID.
@returns True if sensor reading is between 0 and 65535 lux,
false if sensor is saturated
*/
/**************************************************************************/
bool Adafruit_TSL2561_Unified::getEvent(sensors_event_t *event)
{
uint16_t broadband, ir;
/* Clear the event */
memset(event, 0, sizeof(sensors_event_t));
event->version = sizeof(sensors_event_t);
event->sensor_id = _tsl2561SensorID;
event->type = SENSOR_TYPE_LIGHT;
event->timestamp = millis();
/* Calculate the actual lux value */
getLuminosity(&broadband, &ir);
event->light = calculateLux(broadband, ir);
if (event->light == 65536) {
return false;
}
return true;
}
/**************************************************************************/
/*!
@brief Gets the sensor_t data
@param sensor A pointer to a sensor_t structure that we will fill with
details about the TSL2561 and its capabilities
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::getSensor(sensor_t *sensor)
{
/* Clear the sensor_t object */
memset(sensor, 0, sizeof(sensor_t));
/* Insert the sensor name in the fixed length char array */
strncpy (sensor->name, "TSL2561", sizeof(sensor->name) - 1);
sensor->name[sizeof(sensor->name)- 1] = 0;
sensor->version = 1;
sensor->sensor_id = _tsl2561SensorID;
sensor->type = SENSOR_TYPE_LIGHT;
sensor->min_delay = 0;
sensor->max_value = 17000.0; /* Based on trial and error ... confirm! */
sensor->min_value = 1.0;
sensor->resolution = 1.0;
}
/*========================================================================*/
/* PRIVATE FUNCTIONS */
/*========================================================================*/
/**************************************************************************/
/*!
@brief Writes a register and an 8 bit value over I2C
@param reg I2C register to write the value to
@param value The 8-bit value we're writing to the register
*/
/**************************************************************************/
void Adafruit_TSL2561_Unified::write8 (uint8_t reg, uint8_t value)
{
_i2c->beginTransmission(_addr);
_i2c->write(reg);
_i2c->write(value);
_i2c->endTransmission();
}
/**************************************************************************/
/*!
@brief Reads an 8 bit value over I2C
@param reg I2C register to read from
@returns 8-bit value containing single byte data read
*/
/**************************************************************************/
uint8_t Adafruit_TSL2561_Unified::read8(uint8_t reg)
{
_i2c->beginTransmission(_addr);
_i2c->write(reg);
_i2c->endTransmission();
_i2c->requestFrom(_addr, 1);
return _i2c-> read();
}
/**************************************************************************/
/*!
@brief Reads a 16 bit values over I2C
@param reg I2C register to read from
@returns 16-bit value containing 2-byte data read
*/
/**************************************************************************/
uint16_t Adafruit_TSL2561_Unified::read16(uint8_t reg)
{
uint16_t x, t;
_i2c->beginTransmission(_addr);
_i2c->write(reg);
_i2c->endTransmission();
_i2c->requestFrom(_addr, 2);
t = _i2c->read();
x = _i2c->read();
x <<= 8;
x |= t;
return x;
}

View File

@@ -1,203 +0,0 @@
/*!
* @file Adafruit_TSL2561_U.h
*
* This is part of Adafruit's FXOS8700 driver for the Arduino platform. It is
* designed specifically to work with the Adafruit FXOS8700 breakout:
* https://www.adafruit.com/products/3463
*
* These sensors use I2C to communicate, 2 pins (SCL+SDA) are required
* to interface with the breakout.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Written by Kevin "KTOWN" Townsend for Adafruit Industries.
*
* BSD license, all text here must be included in any redistribution.
*
*/
#ifndef ADAFRUIT_TSL2561_H_
#define ADAFRUIT_TSL2561_H_
#include <Arduino.h>
#include <Adafruit_Sensor.h>
#include <Wire.h>
#define TSL2561_VISIBLE 2 ///< channel 0 - channel 1
#define TSL2561_INFRARED 1 ///< channel 1
#define TSL2561_FULLSPECTRUM 0 ///< channel 0
// I2C address options
#define TSL2561_ADDR_LOW (0x29) ///< Default address (pin pulled low)
#define TSL2561_ADDR_FLOAT (0x39) ///< Default address (pin left floating)
#define TSL2561_ADDR_HIGH (0x49) ///< Default address (pin pulled high)
// Lux calculations differ slightly for CS package
//#define TSL2561_PACKAGE_CS ///< Chip scale package
#define TSL2561_PACKAGE_T_FN_CL ///< Dual Flat No-Lead package
#define TSL2561_COMMAND_BIT (0x80) ///< Must be 1
#define TSL2561_CLEAR_BIT (0x40) ///< Clears any pending interrupt (write 1 to clear)
#define TSL2561_WORD_BIT (0x20) ///< 1 = read/write word (rather than byte)
#define TSL2561_BLOCK_BIT (0x10) ///< 1 = using block read/write
#define TSL2561_CONTROL_POWERON (0x03) ///< Control register setting to turn on
#define TSL2561_CONTROL_POWEROFF (0x00) ///< Control register setting to turn off
#define TSL2561_LUX_LUXSCALE (14) ///< Scale by 2^14
#define TSL2561_LUX_RATIOSCALE (9) ///< Scale ratio by 2^9
#define TSL2561_LUX_CHSCALE (10) ///< Scale channel values by 2^10
#define TSL2561_LUX_CHSCALE_TINT0 (0x7517) ///< 322/11 * 2^TSL2561_LUX_CHSCALE
#define TSL2561_LUX_CHSCALE_TINT1 (0x0FE7) ///< 322/81 * 2^TSL2561_LUX_CHSCALE
// T, FN and CL package values
#define TSL2561_LUX_K1T (0x0040) ///< 0.125 * 2^RATIO_SCALE
#define TSL2561_LUX_B1T (0x01f2) ///< 0.0304 * 2^LUX_SCALE
#define TSL2561_LUX_M1T (0x01be) ///< 0.0272 * 2^LUX_SCALE
#define TSL2561_LUX_K2T (0x0080) ///< 0.250 * 2^RATIO_SCALE
#define TSL2561_LUX_B2T (0x0214) ///< 0.0325 * 2^LUX_SCALE
#define TSL2561_LUX_M2T (0x02d1) ///< 0.0440 * 2^LUX_SCALE
#define TSL2561_LUX_K3T (0x00c0) ///< 0.375 * 2^RATIO_SCALE
#define TSL2561_LUX_B3T (0x023f) ///< 0.0351 * 2^LUX_SCALE
#define TSL2561_LUX_M3T (0x037b) ///< 0.0544 * 2^LUX_SCALE
#define TSL2561_LUX_K4T (0x0100) ///< 0.50 * 2^RATIO_SCALE
#define TSL2561_LUX_B4T (0x0270) ///< 0.0381 * 2^LUX_SCALE
#define TSL2561_LUX_M4T (0x03fe) ///< 0.0624 * 2^LUX_SCALE
#define TSL2561_LUX_K5T (0x0138) ///< 0.61 * 2^RATIO_SCALE
#define TSL2561_LUX_B5T (0x016f) ///< 0.0224 * 2^LUX_SCALE
#define TSL2561_LUX_M5T (0x01fc) ///< 0.0310 * 2^LUX_SCALE
#define TSL2561_LUX_K6T (0x019a) ///< 0.80 * 2^RATIO_SCALE
#define TSL2561_LUX_B6T (0x00d2) ///< 0.0128 * 2^LUX_SCALE
#define TSL2561_LUX_M6T (0x00fb) ///< 0.0153 * 2^LUX_SCALE
#define TSL2561_LUX_K7T (0x029a) ///< 1.3 * 2^RATIO_SCALE
#define TSL2561_LUX_B7T (0x0018) ///< 0.00146 * 2^LUX_SCALE
#define TSL2561_LUX_M7T (0x0012) ///< 0.00112 * 2^LUX_SCALE
#define TSL2561_LUX_K8T (0x029a) ///< 1.3 * 2^RATIO_SCALE
#define TSL2561_LUX_B8T (0x0000) ///< 0.000 * 2^LUX_SCALE
#define TSL2561_LUX_M8T (0x0000) ///< 0.000 * 2^LUX_SCALE
// CS package values
#define TSL2561_LUX_K1C (0x0043) ///< 0.130 * 2^RATIO_SCALE
#define TSL2561_LUX_B1C (0x0204) ///< 0.0315 * 2^LUX_SCALE
#define TSL2561_LUX_M1C (0x01ad) ///< 0.0262 * 2^LUX_SCALE
#define TSL2561_LUX_K2C (0x0085) ///< 0.260 * 2^RATIO_SCALE
#define TSL2561_LUX_B2C (0x0228) ///< 0.0337 * 2^LUX_SCALE
#define TSL2561_LUX_M2C (0x02c1) ///< 0.0430 * 2^LUX_SCALE
#define TSL2561_LUX_K3C (0x00c8) ///< 0.390 * 2^RATIO_SCALE
#define TSL2561_LUX_B3C (0x0253) ///< 0.0363 * 2^LUX_SCALE
#define TSL2561_LUX_M3C (0x0363) ///< 0.0529 * 2^LUX_SCALE
#define TSL2561_LUX_K4C (0x010a) ///< 0.520 * 2^RATIO_SCALE
#define TSL2561_LUX_B4C (0x0282) ///< 0.0392 * 2^LUX_SCALE
#define TSL2561_LUX_M4C (0x03df) ///< 0.0605 * 2^LUX_SCALE
#define TSL2561_LUX_K5C (0x014d) ///< 0.65 * 2^RATIO_SCALE
#define TSL2561_LUX_B5C (0x0177) ///< 0.0229 * 2^LUX_SCALE
#define TSL2561_LUX_M5C (0x01dd) ///< 0.0291 * 2^LUX_SCALE
#define TSL2561_LUX_K6C (0x019a) ///< 0.80 * 2^RATIO_SCALE
#define TSL2561_LUX_B6C (0x0101) ///< 0.0157 * 2^LUX_SCALE
#define TSL2561_LUX_M6C (0x0127) ///< 0.0180 * 2^LUX_SCALE
#define TSL2561_LUX_K7C (0x029a) ///< 1.3 * 2^RATIO_SCALE
#define TSL2561_LUX_B7C (0x0037) ///< 0.00338 * 2^LUX_SCALE
#define TSL2561_LUX_M7C (0x002b) ///< 0.00260 * 2^LUX_SCALE
#define TSL2561_LUX_K8C (0x029a) ///< 1.3 * 2^RATIO_SCALE
#define TSL2561_LUX_B8C (0x0000) ///< 0.000 * 2^LUX_SCALE
#define TSL2561_LUX_M8C (0x0000) ///< 0.000 * 2^LUX_SCALE
// Auto-gain thresholds
#define TSL2561_AGC_THI_13MS (4850) ///< Max value at Ti 13ms = 5047
#define TSL2561_AGC_TLO_13MS (100) ///< Min value at Ti 13ms = 100
#define TSL2561_AGC_THI_101MS (36000) ///< Max value at Ti 101ms = 37177
#define TSL2561_AGC_TLO_101MS (200) ///< Min value at Ti 101ms = 200
#define TSL2561_AGC_THI_402MS (63000) ///< Max value at Ti 402ms = 65535
#define TSL2561_AGC_TLO_402MS (500) ///< Min value at Ti 402ms = 500
// Clipping thresholds
#define TSL2561_CLIPPING_13MS (4900) ///< # Counts that trigger a change in gain/integration
#define TSL2561_CLIPPING_101MS (37000) ///< # Counts that trigger a change in gain/integration
#define TSL2561_CLIPPING_402MS (65000) ///< # Counts that trigger a change in gain/integration
// Delay for integration times
#define TSL2561_DELAY_INTTIME_13MS (15) ///< Wait 15ms for 13ms integration
#define TSL2561_DELAY_INTTIME_101MS (120) ///< Wait 120ms for 101ms integration
#define TSL2561_DELAY_INTTIME_402MS (450) ///< Wait 450ms for 402ms integration
/** TSL2561 I2C Registers */
enum
{
TSL2561_REGISTER_CONTROL = 0x00, // Control/power register
TSL2561_REGISTER_TIMING = 0x01, // Set integration time register
TSL2561_REGISTER_THRESHHOLDL_LOW = 0x02, // Interrupt low threshold low-byte
TSL2561_REGISTER_THRESHHOLDL_HIGH = 0x03, // Interrupt low threshold high-byte
TSL2561_REGISTER_THRESHHOLDH_LOW = 0x04, // Interrupt high threshold low-byte
TSL2561_REGISTER_THRESHHOLDH_HIGH = 0x05, // Interrupt high threshold high-byte
TSL2561_REGISTER_INTERRUPT = 0x06, // Interrupt settings
TSL2561_REGISTER_CRC = 0x08, // Factory use only
TSL2561_REGISTER_ID = 0x0A, // TSL2561 identification setting
TSL2561_REGISTER_CHAN0_LOW = 0x0C, // Light data channel 0, low byte
TSL2561_REGISTER_CHAN0_HIGH = 0x0D, // Light data channel 0, high byte
TSL2561_REGISTER_CHAN1_LOW = 0x0E, // Light data channel 1, low byte
TSL2561_REGISTER_CHAN1_HIGH = 0x0F // Light data channel 1, high byte
};
/** Three options for how long to integrate readings for */
typedef enum
{
TSL2561_INTEGRATIONTIME_13MS = 0x00, // 13.7ms
TSL2561_INTEGRATIONTIME_101MS = 0x01, // 101ms
TSL2561_INTEGRATIONTIME_402MS = 0x02 // 402ms
}
tsl2561IntegrationTime_t;
/** TSL2561 offers 2 gain settings */
typedef enum
{
TSL2561_GAIN_1X = 0x00, // No gain
TSL2561_GAIN_16X = 0x10, // 16x gain
}
tsl2561Gain_t;
/**************************************************************************/
/*!
@brief Class that stores state and functions for interacting with TSL2561 Light Sensor
*/
/**************************************************************************/
class Adafruit_TSL2561_Unified : public Adafruit_Sensor {
public:
Adafruit_TSL2561_Unified(uint8_t addr, int32_t sensorID = -1);
boolean begin(void);
boolean begin(TwoWire *theWire);
boolean init();
/* TSL2561 Functions */
void enableAutoRange(bool enable);
void setIntegrationTime(tsl2561IntegrationTime_t time);
void setGain(tsl2561Gain_t gain);
void getLuminosity (uint16_t *broadband, uint16_t *ir);
uint32_t calculateLux(uint16_t broadband, uint16_t ir);
/* Unified Sensor API Functions */
bool getEvent(sensors_event_t*);
void getSensor(sensor_t*);
private:
TwoWire *_i2c;
int8_t _addr;
boolean _tsl2561Initialised;
boolean _tsl2561AutoGain;
tsl2561IntegrationTime_t _tsl2561IntegrationTime;
tsl2561Gain_t _tsl2561Gain;
int32_t _tsl2561SensorID;
void enable (void);
void disable (void);
void write8 (uint8_t reg, uint8_t value);
uint8_t read8 (uint8_t reg);
uint16_t read16 (uint8_t reg);
void getData (uint16_t *broadband, uint16_t *ir);
};
#endif // ADAFRUIT_TSL2561_H

View File

@@ -1,50 +0,0 @@
# Adafruit TSL2561 Light Sensor Driver [![Build Status](https://travis-ci.org/adafruit/Adafruit_TSL2561.svg?branch=master)](https://travis-ci.org/adafruit/Adafruit_TSL2561)
This driver is for the Adafruit TSL2561 Breakout, and is based on Adafruit's Unified Sensor Library (Adafruit_Sensor).
<img src="https://cdn-shop.adafruit.com/970x728/439-00.jpg" height="300"/>
The driver supports manual or 'auto' gain. Adjusting the gain allows you to make the sensor more or less 'sensitive' to light (depending on if you are indoors or outdoors, for example):
```
tsl.setGain(TSL2561_GAIN_1X); /* No gain ... use in bright light to avoid sensor saturation */
tsl.setGain(TSL2561_GAIN_16X); /* 16x gain ... use in low light to boost sensitivity */
tsl.enableAutoGain(true); /* Auto-gain ... switches automatically between 1x and 16x */
```
The driver also supports as automatic clipping detection, and will return '65536' lux when the sensor is saturated and data is unreliable. tsl.getEvent will return false in case of saturation and true in case of valid light data.
## About the TSL2561 ##
The TSL2561 is a 16-bit digital (I2C) light sensor, with adjustable gain and 'integration time'.
Adjusting the 'integration time' essentially increases the resolution of the device, since the analog converter inside the chip has time to take more samples. The integration time can be set as follows:
```
tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_13MS); /* fast but low resolution */
tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_101MS); /* medium resolution and speed */
tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_402MS); /* 16-bit data but slowest conversions */
```
One of the big advantages of the TSL2561 is that it is capable of measuring both broadband (visible plus infrared) and infrared light thanks to two distinct sensing units on the device. This is important in certain lighting environments to be able to read the light level reliably.
More information on the TSL2561 can be found in the datasheet: http://www.adafruit.com/datasheets/TSL2561.pdf
## What is the Adafruit Unified Sensor Library? ##
The Adafruit Unified Sensor Library (Adafruit_Sensor) provides a common interface and data type for any supported sensor. It defines some basic information about the sensor (sensor limits, etc.), and returns standard SI units of a specific type and scale for each supported sensor type.
It provides a simple abstraction layer between your application and the actual sensor HW, allowing you to drop in any comparable sensor with only one or two lines of code to change in your project (essentially the constructor since the functions to read sensor data and get information about the sensor are defined in the base Adafruit_Sensor class).
This is imporant useful for two reasons:
1.) You can use the data right away because it's already converted to SI units that you understand and can compare, rather than meaningless values like 0..1023.
2.) Because SI units are standardised in the sensor library, you can also do quick sanity checks working with new sensors, or drop in any comparable sensor if you need better sensitivity or if a lower cost unit becomes available, etc.
Light sensors will always report units in lux, gyroscopes will always report units in rad/s, etc. ... freeing you up to focus on the data, rather than digging through the datasheet to understand what the sensor's raw numbers really mean.
## About this Driver ##
Adafruit invests time and resources providing this open source code. Please support Adafruit and open-source hardware by purchasing products from Adafruit!
Written by Kevin (KTOWN) Townsend for Adafruit Industries.

View File

@@ -1,140 +0,0 @@
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_TSL2561_U.h>
/* This driver uses the Adafruit unified sensor library (Adafruit_Sensor),
which provides a common 'type' for sensor data and some helper functions.
To use this driver you will also need to download the Adafruit_Sensor
library and include it in your libraries folder.
You should also assign a unique ID to this sensor for use with
the Adafruit Sensor API so that you can identify this particular
sensor in any data logs, etc. To assign a unique ID, simply
provide an appropriate value in the constructor below (12345
is used by default in this example).
Connections
===========
Connect SCL to I2C SCL Clock
Connect SDA to I2C SDA Data
Connect VDD to 3.3V or 5V (whatever your logic level is)
Connect GROUND to common ground
I2C Address
===========
The address will be different depending on whether you leave
the ADDR pin floating (addr 0x39), or tie it to ground or vcc.
The default addess is 0x39, which assumes the ADDR pin is floating
(not connected to anything). If you set the ADDR pin high
or low, use TSL2561_ADDR_HIGH (0x49) or TSL2561_ADDR_LOW
(0x29) respectively.
History
=======
2013/JAN/31 - First version (KTOWN)
*/
Adafruit_TSL2561_Unified tsl = Adafruit_TSL2561_Unified(TSL2561_ADDR_FLOAT, 12345);
/**************************************************************************/
/*
Displays some basic information on this sensor from the unified
sensor API sensor_t type (see Adafruit_Sensor for more information)
*/
/**************************************************************************/
void displaySensorDetails(void)
{
sensor_t sensor;
tsl.getSensor(&sensor);
Serial.println("------------------------------------");
Serial.print ("Sensor: "); Serial.println(sensor.name);
Serial.print ("Driver Ver: "); Serial.println(sensor.version);
Serial.print ("Unique ID: "); Serial.println(sensor.sensor_id);
Serial.print ("Max Value: "); Serial.print(sensor.max_value); Serial.println(" lux");
Serial.print ("Min Value: "); Serial.print(sensor.min_value); Serial.println(" lux");
Serial.print ("Resolution: "); Serial.print(sensor.resolution); Serial.println(" lux");
Serial.println("------------------------------------");
Serial.println("");
delay(500);
}
/**************************************************************************/
/*
Configures the gain and integration time for the TSL2561
*/
/**************************************************************************/
void configureSensor(void)
{
/* You can also manually set the gain or enable auto-gain support */
// tsl.setGain(TSL2561_GAIN_1X); /* No gain ... use in bright light to avoid sensor saturation */
// tsl.setGain(TSL2561_GAIN_16X); /* 16x gain ... use in low light to boost sensitivity */
tsl.enableAutoRange(true); /* Auto-gain ... switches automatically between 1x and 16x */
/* Changing the integration time gives you better sensor resolution (402ms = 16-bit data) */
tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_13MS); /* fast but low resolution */
// tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_101MS); /* medium resolution and speed */
// tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_402MS); /* 16-bit data but slowest conversions */
/* Update these values depending on what you've set above! */
Serial.println("------------------------------------");
Serial.print ("Gain: "); Serial.println("Auto");
Serial.print ("Timing: "); Serial.println("13 ms");
Serial.println("------------------------------------");
}
/**************************************************************************/
/*
Arduino setup function (automatically called at startup)
*/
/**************************************************************************/
void setup(void)
{
Serial.begin(9600);
Serial.println("Light Sensor Test"); Serial.println("");
/* Initialise the sensor */
//use tsl.begin() to default to Wire,
//tsl.begin(&Wire2) directs api to use Wire2, etc.
if(!tsl.begin())
{
/* There was a problem detecting the TSL2561 ... check your connections */
Serial.print("Ooops, no TSL2561 detected ... Check your wiring or I2C ADDR!");
while(1);
}
/* Display some basic information on this sensor */
displaySensorDetails();
/* Setup the sensor gain and integration time */
configureSensor();
/* We're ready to go! */
Serial.println("");
}
/**************************************************************************/
/*
Arduino loop function, called once 'setup' is complete (your own code
should go here)
*/
/**************************************************************************/
void loop(void)
{
/* Get a new sensor event */
sensors_event_t event;
tsl.getEvent(&event);
/* Display the results (light is measured in lux) */
if (event.light)
{
Serial.print(event.light); Serial.println(" lux");
}
else
{
/* If event.light = 0 lux the sensor is probably saturated
and no reliable data could be generated! */
Serial.println("Sensor overload");
}
delay(250);
}

View File

@@ -1,9 +0,0 @@
name=Adafruit TSL2561
version=1.0.2
author=Adafruit
maintainer=Adafruit <info@adafruit.com>
sentence=Unified sensor driver for Adafruit's TSL2561 breakouts
paragraph=Unified sensor driver for Adafruit's TSL2561 breakouts
category=Sensors
url=https://github.com/adafruit/Adafruit_TSL2561
architectures=*

View File

@@ -1,4 +0,0 @@
INA226 Arduino Library 1.0.0 / 08.04.2014
======================================================================
* First release

View File

@@ -1,332 +0,0 @@
/*
INA226.cpp - Class file for the INA226 Bi-directional Current/Power Monitor Arduino Library.
Version: 1.0.0
(c) 2014 Korneliusz Jarzebski
www.jarzebski.pl
This program is free software: you can redistribute it and/or modify
it under the terms of the version 3 GNU General Public License as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <WSWire.h>
#include "INA226.h"
bool INA226::begin(uint8_t address)
{
Wire.begin();
inaAddress = address;
return true;
}
bool INA226::configure(ina226_averages_t avg, ina226_busConvTime_t busConvTime, ina226_shuntConvTime_t shuntConvTime, ina226_mode_t mode)
{
uint16_t config = 0;
config |= (avg << 9 | busConvTime << 6 | shuntConvTime << 3 | mode);
vBusMax = 36;
vShuntMax = 0.08192f;
writeRegister16(INA226_REG_CONFIG, config);
return true;
}
bool INA226::calibrate(float rShuntValue, float iMaxExpected)
{
uint16_t calibrationValue;
rShunt = rShuntValue;
float iMaxPossible, minimumLSB;
iMaxPossible = vShuntMax / rShunt;
minimumLSB = iMaxExpected / 32767;
currentLSB = (uint16_t)(minimumLSB * 100000000);
currentLSB /= 100000000;
currentLSB /= 0.0001;
currentLSB = ceil(currentLSB);
currentLSB *= 0.0001;
powerLSB = currentLSB * 25;
calibrationValue = (uint16_t)((0.00512) / (currentLSB * rShunt));
writeRegister16(INA226_REG_CALIBRATION, calibrationValue);
return true;
}
float INA226::getMaxPossibleCurrent(void)
{
return (vShuntMax / rShunt);
}
float INA226::getMaxCurrent(void)
{
float maxCurrent = (currentLSB * 32767);
float maxPossible = getMaxPossibleCurrent();
if (maxCurrent > maxPossible)
{
return maxPossible;
} else
{
return maxCurrent;
}
}
float INA226::getMaxShuntVoltage(void)
{
float maxVoltage = getMaxCurrent() * rShunt;
if (maxVoltage >= vShuntMax)
{
return vShuntMax;
} else
{
return maxVoltage;
}
}
float INA226::getMaxPower(void)
{
return (getMaxCurrent() * vBusMax);
}
float INA226::readBusPower(void)
{
return (readRegister16(INA226_REG_POWER) * powerLSB);
}
float INA226::readShuntCurrent(void)
{
return (readRegister16(INA226_REG_CURRENT) * currentLSB);
}
float INA226::readShuntVoltage(void)
{
float voltage;
voltage = readRegister16(INA226_REG_SHUNTVOLTAGE);
return (voltage * 0.0000025);
}
float INA226::readBusVoltage(void)
{
int16_t voltage;
voltage = readRegister16(INA226_REG_BUSVOLTAGE);
return (voltage * 0.00125);
}
ina226_averages_t INA226::getAverages(void)
{
uint16_t value;
value = readRegister16(INA226_REG_CONFIG);
value &= 0b0000111000000000;
value >>= 9;
return (ina226_averages_t)value;
}
ina226_busConvTime_t INA226::getBusConversionTime(void)
{
uint16_t value;
value = readRegister16(INA226_REG_CONFIG);
value &= 0b0000000111000000;
value >>= 6;
return (ina226_busConvTime_t)value;
}
ina226_shuntConvTime_t INA226::getShuntConversionTime(void)
{
uint16_t value;
value = readRegister16(INA226_REG_CONFIG);
value &= 0b0000000000111000;
value >>= 3;
return (ina226_shuntConvTime_t)value;
}
ina226_mode_t INA226::getMode(void)
{
uint16_t value;
value = readRegister16(INA226_REG_CONFIG);
value &= 0b0000000000000111;
return (ina226_mode_t)value;
}
void INA226::setMaskEnable(uint16_t mask)
{
writeRegister16(INA226_REG_MASKENABLE, mask);
}
uint16_t INA226::getMaskEnable(void)
{
return readRegister16(INA226_REG_MASKENABLE);
}
void INA226::enableShuntOverLimitAlert(void)
{
writeRegister16(INA226_REG_MASKENABLE, INA226_BIT_SOL);
}
void INA226::enableShuntUnderLimitAlert(void)
{
writeRegister16(INA226_REG_MASKENABLE, INA226_BIT_SUL);
}
void INA226::enableBusOvertLimitAlert(void)
{
writeRegister16(INA226_REG_MASKENABLE, INA226_BIT_BOL);
}
void INA226::enableBusUnderLimitAlert(void)
{
writeRegister16(INA226_REG_MASKENABLE, INA226_BIT_BUL);
}
void INA226::enableOverPowerLimitAlert(void)
{
writeRegister16(INA226_REG_MASKENABLE, INA226_BIT_POL);
}
void INA226::enableConversionReadyAlert(void)
{
writeRegister16(INA226_REG_MASKENABLE, INA226_BIT_CNVR);
}
void INA226::setBusVoltageLimit(float voltage)
{
uint16_t value = voltage / 0.00125;
writeRegister16(INA226_REG_ALERTLIMIT, value);
}
void INA226::setShuntVoltageLimit(float voltage)
{
uint16_t value = voltage * 25000;
writeRegister16(INA226_REG_ALERTLIMIT, value);
}
void INA226::setPowerLimit(float watts)
{
uint16_t value = watts / powerLSB;
writeRegister16(INA226_REG_ALERTLIMIT, value);
}
void INA226::setAlertInvertedPolarity(bool inverted)
{
uint16_t temp = getMaskEnable();
if (inverted)
{
temp |= INA226_BIT_APOL;
} else
{
temp &= ~INA226_BIT_APOL;
}
setMaskEnable(temp);
}
void INA226::setAlertLatch(bool latch)
{
uint16_t temp = getMaskEnable();
if (latch)
{
temp |= INA226_BIT_LEN;
} else
{
temp &= ~INA226_BIT_LEN;
}
setMaskEnable(temp);
}
bool INA226::isMathOverflow(void)
{
return ((getMaskEnable() & INA226_BIT_OVF) == INA226_BIT_OVF);
}
bool INA226::isAlert(void)
{
return ((getMaskEnable() & INA226_BIT_AFF) == INA226_BIT_AFF);
}
int16_t INA226::readRegister16(uint8_t reg)
{
int16_t value;
Wire.beginTransmission(inaAddress);
#if ARDUINO >= 100
Wire.write(reg);
#else
Wire.send(reg);
#endif
Wire.endTransmission();
delay(1);
Wire.beginTransmission(inaAddress);
Wire.requestFrom(inaAddress, 2);
while(!Wire.available()) {};
#if ARDUINO >= 100
uint8_t vha = Wire.read();
uint8_t vla = Wire.read();
#else
uint8_t vha = Wire.receive();
uint8_t vla = Wire.receive();
#endif;
Wire.endTransmission();
value = vha << 8 | vla;
return value;
}
void INA226::writeRegister16(uint8_t reg, uint16_t val)
{
uint8_t vla;
vla = (uint8_t)val;
val >>= 8;
Wire.beginTransmission(inaAddress);
#if ARDUINO >= 100
Wire.write(reg);
Wire.write((uint8_t)val);
Wire.write(vla);
#else
Wire.send(reg);
Wire.send((uint8_t)val);
Wire.send(vla);
#endif
Wire.endTransmission();
}

View File

@@ -1,154 +0,0 @@
/*
INA226.h - Header file for the Bi-directional Current/Power Monitor Arduino Library.
Version: 1.0.0
(c) 2014 Korneliusz Jarzebski
www.jarzebski.pl
This program is free software: you can redistribute it and/or modify
it under the terms of the version 3 GNU General Public License as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INA226_h
#define INA226_h
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define INA226_ADDRESS (0x40)
#define INA226_REG_CONFIG (0x00)
#define INA226_REG_SHUNTVOLTAGE (0x01)
#define INA226_REG_BUSVOLTAGE (0x02)
#define INA226_REG_POWER (0x03)
#define INA226_REG_CURRENT (0x04)
#define INA226_REG_CALIBRATION (0x05)
#define INA226_REG_MASKENABLE (0x06)
#define INA226_REG_ALERTLIMIT (0x07)
#define INA226_BIT_SOL (0x8000)
#define INA226_BIT_SUL (0x4000)
#define INA226_BIT_BOL (0x2000)
#define INA226_BIT_BUL (0x1000)
#define INA226_BIT_POL (0x0800)
#define INA226_BIT_CNVR (0x0400)
#define INA226_BIT_AFF (0x0010)
#define INA226_BIT_CVRF (0x0008)
#define INA226_BIT_OVF (0x0004)
#define INA226_BIT_APOL (0x0002)
#define INA226_BIT_LEN (0x0001)
typedef enum
{
INA226_AVERAGES_1 = 0b000,
INA226_AVERAGES_4 = 0b001,
INA226_AVERAGES_16 = 0b010,
INA226_AVERAGES_64 = 0b011,
INA226_AVERAGES_128 = 0b100,
INA226_AVERAGES_256 = 0b101,
INA226_AVERAGES_512 = 0b110,
INA226_AVERAGES_1024 = 0b111
} ina226_averages_t;
typedef enum
{
INA226_BUS_CONV_TIME_140US = 0b000,
INA226_BUS_CONV_TIME_204US = 0b001,
INA226_BUS_CONV_TIME_332US = 0b010,
INA226_BUS_CONV_TIME_588US = 0b011,
INA226_BUS_CONV_TIME_1100US = 0b100,
INA226_BUS_CONV_TIME_2116US = 0b101,
INA226_BUS_CONV_TIME_4156US = 0b110,
INA226_BUS_CONV_TIME_8244US = 0b111
} ina226_busConvTime_t;
typedef enum
{
INA226_SHUNT_CONV_TIME_140US = 0b000,
INA226_SHUNT_CONV_TIME_204US = 0b001,
INA226_SHUNT_CONV_TIME_332US = 0b010,
INA226_SHUNT_CONV_TIME_588US = 0b011,
INA226_SHUNT_CONV_TIME_1100US = 0b100,
INA226_SHUNT_CONV_TIME_2116US = 0b101,
INA226_SHUNT_CONV_TIME_4156US = 0b110,
INA226_SHUNT_CONV_TIME_8244US = 0b111
} ina226_shuntConvTime_t;
typedef enum
{
INA226_MODE_POWER_DOWN = 0b000,
INA226_MODE_SHUNT_TRIG = 0b001,
INA226_MODE_BUS_TRIG = 0b010,
INA226_MODE_SHUNT_BUS_TRIG = 0b011,
INA226_MODE_ADC_OFF = 0b100,
INA226_MODE_SHUNT_CONT = 0b101,
INA226_MODE_BUS_CONT = 0b110,
INA226_MODE_SHUNT_BUS_CONT = 0b111,
} ina226_mode_t;
class INA226
{
public:
bool begin(uint8_t address = INA226_ADDRESS);
bool configure(ina226_averages_t avg = INA226_AVERAGES_1, ina226_busConvTime_t busConvTime = INA226_BUS_CONV_TIME_1100US, ina226_shuntConvTime_t shuntConvTime = INA226_SHUNT_CONV_TIME_1100US, ina226_mode_t mode = INA226_MODE_SHUNT_BUS_CONT);
bool calibrate(float rShuntValue = 0.1, float iMaxExcepted = 2);
ina226_averages_t getAverages(void);
ina226_busConvTime_t getBusConversionTime(void);
ina226_shuntConvTime_t getShuntConversionTime(void);
ina226_mode_t getMode(void);
void enableShuntOverLimitAlert(void);
void enableShuntUnderLimitAlert(void);
void enableBusOvertLimitAlert(void);
void enableBusUnderLimitAlert(void);
void enableOverPowerLimitAlert(void);
void enableConversionReadyAlert(void);
void setBusVoltageLimit(float voltage);
void setShuntVoltageLimit(float voltage);
void setPowerLimit(float watts);
void setAlertInvertedPolarity(bool inverted);
void setAlertLatch(bool latch);
bool isMathOverflow(void);
bool isAlert(void);
float readShuntCurrent(void);
float readShuntVoltage(void);
float readBusPower(void);
float readBusVoltage(void);
float getMaxPossibleCurrent(void);
float getMaxCurrent(void);
float getMaxShuntVoltage(void);
float getMaxPower(void);
private:
int8_t inaAddress;
float currentLSB, powerLSB;
float vShuntMax, vBusMax, rShunt;
void setMaskEnable(uint16_t mask);
uint16_t getMaskEnable(void);
void writeRegister16(uint8_t reg, uint16_t val);
int16_t readRegister16(uint8_t reg);
};
#endif

View File

@@ -1,67 +0,0 @@
/*
INA226 Bi-directional Current/Power Monitor. Alert Example.
Read more: http://www.jarzebski.pl/arduino/czujniki-i-sensory/cyfrowy-czujnik-pradu-mocy-ina226.html
GIT: https://github.com/jarzebski/Arduino-INA226
Web: http://www.jarzebski.pl
(c) 2014 by Korneliusz Jarzebski
*/
#include <Wire.h>
#include <INA226.h>
INA226 ina;
void setup()
{
Serial.begin(115200);
Serial.println("Initialize INA226");
Serial.println("-----------------------------------------------");
// Default INA226 address is 0x40
ina.begin();
// Configure INA226
ina.configure(INA226_AVERAGES_1, INA226_BUS_CONV_TIME_1100US, INA226_SHUNT_CONV_TIME_1100US, INA226_MODE_SHUNT_BUS_CONT);
// Calibrate INA226. Rshunt = 0.01 ohm, Max excepted current = 4A
ina.calibrate(0.01, 4);
// Enable Bus Over-Voltage Alert
// ina.enableBusOvertLimitAlert();
// ina.enableBusUnderLimitAlert();
// ina.setBusVoltageLimit(3.33);
// Enable Shunt Over-Voltage Alert
// ina.enableShuntOverLimitAlert();
// ina.enableShuntUnderLimitAlert();
// ina.setShuntVoltageLimit(0.0055);
// Enable Power Over-Limit Alert
ina.enableOverPowerLimitAlert();
ina.setPowerLimit(0.130);
// ina.setAlertInvertedPolarity(true)
}
void loop()
{
Serial.print("Bus voltage: ");
Serial.print(ina.readBusVoltage(), 5);
Serial.println(" V");
Serial.print("Bus power: ");
Serial.print(ina.readBusPower(), 5);
Serial.println(" W");
Serial.print("Shunt voltage: ");
Serial.print(ina.readShuntVoltage(), 5);
Serial.println(" V");
Serial.print("Shunt current: ");
Serial.print(ina.readShuntCurrent(), 5);
Serial.println(" A");
Serial.println("");
delay(1000);
}

View File

@@ -1,64 +0,0 @@
/*
INA226 Bi-directional Current/Power Monitor. Alert with latch Example.
Read more: http://www.jarzebski.pl/arduino/czujniki-i-sensory/cyfrowy-czujnik-pradu-mocy-ina226.html
GIT: https://github.com/jarzebski/Arduino-INA226
Web: http://www.jarzebski.pl
(c) 2014 by Korneliusz Jarzebski
*/
#include <Wire.h>
#include <INA226.h>
INA226 ina;
void setup()
{
Serial.begin(115200);
Serial.println("Initialize INA226");
Serial.println("-----------------------------------------------");
// Default INA226 address is 0x40
ina.begin();
// Configure INA226
ina.configure(INA226_AVERAGES_1, INA226_BUS_CONV_TIME_1100US, INA226_SHUNT_CONV_TIME_1100US, INA226_MODE_SHUNT_BUS_CONT);
// Calibrate INA226. Rshunt = 0.01 ohm, Max excepted current = 4A
ina.calibrate(0.01, 4);
// Enable Power Over-Limit Alert
ina.enableOverPowerLimitAlert();
ina.setPowerLimit(0.130);
ina.setAlertLatch(true);
}
void loop()
{
Serial.print("Bus voltage: ");
Serial.print(ina.readBusVoltage(), 5);
Serial.println(" V");
Serial.print("Bus power: ");
Serial.print(ina.readBusPower(), 5);
Serial.println(" W");
Serial.print("Shunt voltage: ");
Serial.print(ina.readShuntVoltage(), 5);
Serial.println(" V");
Serial.print("Shunt current: ");
Serial.print(ina.readShuntCurrent(), 5);
Serial.println(" A");
if (ina.isAlert())
{
// Latch will be removed here
Serial.println("ALERT");
}
Serial.println("");
delay(1000);
}

View File

@@ -1,132 +0,0 @@
/*
INA226 Bi-directional Current/Power Monitor. Simple Example.
Read more: http://www.jarzebski.pl/arduino/czujniki-i-sensory/cyfrowy-czujnik-pradu-mocy-ina226.html
GIT: https://github.com/jarzebski/Arduino-INA226
Web: http://www.jarzebski.pl
(c) 2014 by Korneliusz Jarzebski
*/
#include <Wire.h>
#include <INA226.h>
INA226 ina;
void checkConfig()
{
Serial.print("Mode: ");
switch (ina.getMode())
{
case INA226_MODE_POWER_DOWN: Serial.println("Power-Down"); break;
case INA226_MODE_SHUNT_TRIG: Serial.println("Shunt Voltage, Triggered"); break;
case INA226_MODE_BUS_TRIG: Serial.println("Bus Voltage, Triggered"); break;
case INA226_MODE_SHUNT_BUS_TRIG: Serial.println("Shunt and Bus, Triggered"); break;
case INA226_MODE_ADC_OFF: Serial.println("ADC Off"); break;
case INA226_MODE_SHUNT_CONT: Serial.println("Shunt Voltage, Continuous"); break;
case INA226_MODE_BUS_CONT: Serial.println("Bus Voltage, Continuous"); break;
case INA226_MODE_SHUNT_BUS_CONT: Serial.println("Shunt and Bus, Continuous"); break;
default: Serial.println("unknown");
}
Serial.print("Samples average: ");
switch (ina.getAverages())
{
case INA226_AVERAGES_1: Serial.println("1 sample"); break;
case INA226_AVERAGES_4: Serial.println("4 samples"); break;
case INA226_AVERAGES_16: Serial.println("16 samples"); break;
case INA226_AVERAGES_64: Serial.println("64 samples"); break;
case INA226_AVERAGES_128: Serial.println("128 samples"); break;
case INA226_AVERAGES_256: Serial.println("256 samples"); break;
case INA226_AVERAGES_512: Serial.println("512 samples"); break;
case INA226_AVERAGES_1024: Serial.println("1024 samples"); break;
default: Serial.println("unknown");
}
Serial.print("Bus conversion time: ");
switch (ina.getBusConversionTime())
{
case INA226_BUS_CONV_TIME_140US: Serial.println("140uS"); break;
case INA226_BUS_CONV_TIME_204US: Serial.println("204uS"); break;
case INA226_BUS_CONV_TIME_332US: Serial.println("332uS"); break;
case INA226_BUS_CONV_TIME_588US: Serial.println("558uS"); break;
case INA226_BUS_CONV_TIME_1100US: Serial.println("1.100ms"); break;
case INA226_BUS_CONV_TIME_2116US: Serial.println("2.116ms"); break;
case INA226_BUS_CONV_TIME_4156US: Serial.println("4.156ms"); break;
case INA226_BUS_CONV_TIME_8244US: Serial.println("8.244ms"); break;
default: Serial.println("unknown");
}
Serial.print("Shunt conversion time: ");
switch (ina.getShuntConversionTime())
{
case INA226_SHUNT_CONV_TIME_140US: Serial.println("140uS"); break;
case INA226_SHUNT_CONV_TIME_204US: Serial.println("204uS"); break;
case INA226_SHUNT_CONV_TIME_332US: Serial.println("332uS"); break;
case INA226_SHUNT_CONV_TIME_588US: Serial.println("558uS"); break;
case INA226_SHUNT_CONV_TIME_1100US: Serial.println("1.100ms"); break;
case INA226_SHUNT_CONV_TIME_2116US: Serial.println("2.116ms"); break;
case INA226_SHUNT_CONV_TIME_4156US: Serial.println("4.156ms"); break;
case INA226_SHUNT_CONV_TIME_8244US: Serial.println("8.244ms"); break;
default: Serial.println("unknown");
}
Serial.print("Max possible current: ");
Serial.print(ina.getMaxPossibleCurrent());
Serial.println(" A");
Serial.print("Max current: ");
Serial.print(ina.getMaxCurrent());
Serial.println(" A");
Serial.print("Max shunt voltage: ");
Serial.print(ina.getMaxShuntVoltage());
Serial.println(" V");
Serial.print("Max power: ");
Serial.print(ina.getMaxPower());
Serial.println(" W");
}
void setup()
{
Serial.begin(115200);
Serial.println("Initialize INA226");
Serial.println("-----------------------------------------------");
// Default INA226 address is 0x40
ina.begin();
// Configure INA226
ina.configure(INA226_AVERAGES_1, INA226_BUS_CONV_TIME_1100US, INA226_SHUNT_CONV_TIME_1100US, INA226_MODE_SHUNT_BUS_CONT);
// Calibrate INA226. Rshunt = 0.01 ohm, Max excepted current = 4A
ina.calibrate(0.01, 4);
// Display configuration
checkConfig();
Serial.println("-----------------------------------------------");
}
void loop()
{
Serial.print("Bus voltage: ");
Serial.print(ina.readBusVoltage(), 5);
Serial.println(" V");
Serial.print("Bus power: ");
Serial.print(ina.readBusPower(), 5);
Serial.println(" W");
Serial.print("Shunt voltage: ");
Serial.print(ina.readShuntVoltage(), 5);
Serial.println(" V");
Serial.print("Shunt current: ");
Serial.print(ina.readShuntCurrent(), 5);
Serial.println(" A");
Serial.println("");
delay(1000);
}

View File

@@ -1,674 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
{one line to give the program's name and a brief idea of what it does.}
Copyright (C) {year} {name of author}
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@@ -1,8 +0,0 @@
Arduino-INA226
==============
INA226 Bi-directional Current/Power Monitor Arduino Library
Tutorials: http://www.jarzebski.pl/arduino/czujniki-i-sensory/cyfrowy-czujnik-pradu-mocy-ina226.html
This library use I2C to communicate, 2 pins are required to interface.

View File

@@ -1,3 +0,0 @@
*.un~
*.sublime-project
*.sublime-workspace

View File

@@ -1,30 +0,0 @@
language: python
python:
- "2.7"
# Cache PlatformIO packages using Travis CI container-based infrastructure
sudo: false
cache:
directories:
- "~/.platformio"
env:
- PLATFORMIO_CI_SRC=examples/AiwaRCT501SendDemo PLATFORMIO_BUILD_FLAGS="-DSEND_AIWA_RC_T501"
- PLATFORMIO_CI_SRC=examples/IRrecord PLATFORMIO_BUILD_FLAGS="-DSEND_NEC -DSEND_SONY -DSEND_RC5 -DSEND_RC6"
- PLATFORMIO_CI_SRC=examples/IRrecvDemo
- PLATFORMIO_CI_SRC=examples/IRrecvDump
- PLATFORMIO_CI_SRC=examples/IRrecvDumpV2
- PLATFORMIO_CI_SRC=examples/IRrelay
- PLATFORMIO_CI_SRC=examples/IRsendDemo PLATFORMIO_BUILD_FLAGS="-DSEND_SONY"
- PLATFORMIO_CI_SRC=examples/IRtest PLATFORMIO_BUILD_FLAGS="-DSEND_NEC -DSEND_SONY -DSEND_RC5 -DSEND_RC6"
- PLATFORMIO_CI_SRC=examples/IRtest2 PLATFORMIO_BUILD_FLAGS="-DSEND_NEC -DSEND_SONY -DSEND_RC5 -DSEND_RC6"
- PLATFORMIO_CI_SRC=examples/JVCPanasonicSendDemo PLATFORMIO_BUILD_FLAGS="-DSEND_JVC -DSEND_PANASONIC"
- PLATFORMIO_CI_SRC=examples/LegoPowerFunctionsSendDemo PLATFORMIO_BUILD_FLAGS="-DSEND_LEGO_PF"
- PLATFORMIO_CI_SRC=examples/LegoPowerFunctionsTests PLATFORMIO_BUILD_FLAGS="-DSEND_LEGO_PF"
- PLATFORMIO_CI_SRC=examples/IRremoteInfo
install:
- pip install -U platformio
script:
- platformio ci --lib="." --board=uno --board=leonardo --board=pro16MHzatmega168 --board=btatmega328

View File

@@ -1,11 +0,0 @@
# Contribution Guidlines
This library is the culmination of the expertise of many members of the open source community who have dedicated their time and hard work. The best way to ask for help or propose a new idea is to [create a new issue](https://github.com/z3t0/Arduino-IRremote/issues/new) while creating a Pull Request with your code changes allows you to share your own innovations with the rest of the community.
The following are some guidelines to observe when creating issues or PRs:
- Be friendly; it is important that we can all enjoy a safe space as we are all working on the same project and it is okay for people to have different ideas
- [Use code blocks](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet#code); it helps us help you when we can read your code! On that note also refrain from pasting more than 30 lines of code in a post, instead [create a gist](https://gist.github.com/) if you need to share large snippets
- Use reasonable titles; refrain from using overly long or capitalized titles as they are usually annoying and do little to encourage others to help :smile:
- Be detailed; refrain from mentioning code problems without sharing your source code and always give information regarding your board and version of the library
If there is any need to contact me then you can find my email on the README, I do not mind responding to emails but it would be in your own interests to create issues if you need help with the library as responses would be from a larger community with greater knowledge!

View File

@@ -1,22 +0,0 @@
## Contributors
These are the active contributors of this project that you may contact if there is anything you need help with or if you have suggestions.
- [z3t0](https://github.com/z3t0) : Active Contributor and currently also the main contributor.
* Email: zetoslab@gmail.com
- [shirriff](https://github.com/shirriff) : An amazing person who worked to create this awesome library and provide unending support
- [AnalysIR](https:/github.com/AnalysIR): Active contributor and is amazing with providing support!
- [Informatic](https://github.com/Informatic) : Active contributor
- [fmeschia](https://github.com/fmeschia) : Active contributor
- [PaulStoffregen](https://github.com/paulstroffregen) : Active contributor
- [crash7](https://github.com/crash7) : Active contributor
- [Neco777](https://github.com/neco777) : Active contributor
- [Lauszus](https://github.com/lauszus) : Active contributor
- [csBlueChip](https://github.com/csbluechip) : Active contributor, who contributed major and vital changes to the code base.
- [Sebazzz](https://github.com/sebazz): Contributor
- [lumbric](https://github.com/lumbric): Contributor
- [ElectricRCAircraftGuy](https://github.com/electricrcaircraftguy): Active Contributor
- [philipphenkel](https://github.com/philipphenkel): Active Contributor
- [MCUdude](https://github.com/MCUdude): Contributor
- [marcmerlin](https://github.com/marcmerlin): Contributor (ESP32 port)
Note: This list is being updated constantly so please let [z3t0](https://github.com/z3t0) know if you have been missed.

View File

@@ -1,200 +0,0 @@
//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
//
// Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
// Modified by Mitra Ardron <mitra@mitra.biz>
// Added Sanyo and Mitsubishi controllers
// Modified Sony to spot the repeat codes that some Sony's send
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// LG added by Darryl Smith (based on the JVC protocol)
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************
// Defining IR_GLOBAL here allows us to declare the instantiation of global variables
#define IR_GLOBAL
# include "IRremote.h"
# include "IRremoteInt.h"
#undef IR_GLOBAL
#ifndef IR_TIMER_USE_ESP32
#include <avr/interrupt.h>
#endif
//+=============================================================================
// The match functions were (apparently) originally MACROs to improve code speed
// (although this would have bloated the code) hence the names being CAPS
// A later release implemented debug output and so they needed to be converted
// to functions.
// I tried to implement a dual-compile mode (DEBUG/non-DEBUG) but for some
// reason, no matter what I did I could not get them to function as macros again.
// I have found a *lot* of bugs in the Arduino compiler over the last few weeks,
// and I am currently assuming that one of these bugs is my problem.
// I may revisit this code at a later date and look at the assembler produced
// in a hope of finding out what is going on, but for now they will remain as
// functions even in non-DEBUG mode
//
int MATCH (int measured, int desired)
{
DBG_PRINT(F("Testing: "));
DBG_PRINT(TICKS_LOW(desired), DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(measured, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(TICKS_HIGH(desired), DEC);
bool passed = ((measured >= TICKS_LOW(desired)) && (measured <= TICKS_HIGH(desired)));
if (passed)
DBG_PRINTLN(F("?; passed"));
else
DBG_PRINTLN(F("?; FAILED"));
return passed;
}
//+========================================================
// Due to sensor lag, when received, Marks tend to be 100us too long
//
int MATCH_MARK (int measured_ticks, int desired_us)
{
DBG_PRINT(F("Testing mark (actual vs desired): "));
DBG_PRINT(measured_ticks * USECPERTICK, DEC);
DBG_PRINT(F("us vs "));
DBG_PRINT(desired_us, DEC);
DBG_PRINT("us");
DBG_PRINT(": ");
DBG_PRINT(TICKS_LOW(desired_us + MARK_EXCESS) * USECPERTICK, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(measured_ticks * USECPERTICK, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(TICKS_HIGH(desired_us + MARK_EXCESS) * USECPERTICK, DEC);
bool passed = ((measured_ticks >= TICKS_LOW (desired_us + MARK_EXCESS))
&& (measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS)));
if (passed)
DBG_PRINTLN(F("?; passed"));
else
DBG_PRINTLN(F("?; FAILED"));
return passed;
}
//+========================================================
// Due to sensor lag, when received, Spaces tend to be 100us too short
//
int MATCH_SPACE (int measured_ticks, int desired_us)
{
DBG_PRINT(F("Testing space (actual vs desired): "));
DBG_PRINT(measured_ticks * USECPERTICK, DEC);
DBG_PRINT(F("us vs "));
DBG_PRINT(desired_us, DEC);
DBG_PRINT("us");
DBG_PRINT(": ");
DBG_PRINT(TICKS_LOW(desired_us - MARK_EXCESS) * USECPERTICK, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(measured_ticks * USECPERTICK, DEC);
DBG_PRINT(F(" <= "));
DBG_PRINT(TICKS_HIGH(desired_us - MARK_EXCESS) * USECPERTICK, DEC);
bool passed = ((measured_ticks >= TICKS_LOW (desired_us - MARK_EXCESS))
&& (measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS)));
if (passed)
DBG_PRINTLN(F("?; passed"));
else
DBG_PRINTLN(F("?; FAILED"));
return passed;
}
//+=============================================================================
// Interrupt Service Routine - Fires every 50uS
// TIMER2 interrupt code to collect raw data.
// Widths of alternating SPACE, MARK are recorded in rawbuf.
// Recorded in ticks of 50uS [microseconds, 0.000050 seconds]
// 'rawlen' counts the number of entries recorded so far.
// First entry is the SPACE between transmissions.
// As soon as a the first [SPACE] entry gets long:
// Ready is set; State switches to IDLE; Timing of SPACE continues.
// As soon as first MARK arrives:
// Gap width is recorded; Ready is cleared; New logging starts
//
#ifdef IR_TIMER_USE_ESP32
void IRTimer()
#else
ISR (TIMER_INTR_NAME)
#endif
{
TIMER_RESET;
// Read if IR Receiver -> SPACE [xmt LED off] or a MARK [xmt LED on]
// digitalRead() is very slow. Optimisation is possible, but makes the code unportable
uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin);
irparams.timer++; // One more 50uS tick
if (irparams.rawlen >= RAWBUF) irparams.rcvstate = STATE_OVERFLOW ; // Buffer overflow
switch(irparams.rcvstate) {
//......................................................................
case STATE_IDLE: // In the middle of a gap
if (irdata == MARK) {
if (irparams.timer < GAP_TICKS) { // Not big enough to be a gap.
irparams.timer = 0;
} else {
// Gap just ended; Record duration; Start recording transmission
irparams.overflow = false;
irparams.rawlen = 0;
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
}
}
break;
//......................................................................
case STATE_MARK: // Timing Mark
if (irdata == SPACE) { // Mark ended; Record time
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_SPACE;
}
break;
//......................................................................
case STATE_SPACE: // Timing Space
if (irdata == MARK) { // Space just ended; Record time
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
} else if (irparams.timer > GAP_TICKS) { // Space
// A long Space, indicates gap between codes
// Flag the current code as ready for processing
// Switch to STOP
// Don't reset timer; keep counting Space width
irparams.rcvstate = STATE_STOP;
}
break;
//......................................................................
case STATE_STOP: // Waiting; Measuring Gap
if (irdata == MARK) irparams.timer = 0 ; // Reset gap timer
break;
//......................................................................
case STATE_OVERFLOW: // Flag up a read overflow; Stop the State Machine
irparams.overflow = true;
irparams.rcvstate = STATE_STOP;
break;
}
// If requested, flash LED while receiving IR data
if (irparams.blinkflag) {
if (irdata == MARK)
if (irparams.blinkpin) digitalWrite(irparams.blinkpin, HIGH); // Turn user defined pin LED on
else BLINKLED_ON() ; // if no user defined LED pin, turn default LED pin for the hardware on
else if (irparams.blinkpin) digitalWrite(irparams.blinkpin, LOW); // Turn user defined pin LED on
else BLINKLED_OFF() ; // if no user defined LED pin, turn default LED pin for the hardware on
}
}

View File

@@ -1,344 +0,0 @@
//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
// Edited by Mitra to add new controller SANYO
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// LG added by Darryl Smith (based on the JVC protocol)
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************
#ifndef IRremote_h
#define IRremote_h
//------------------------------------------------------------------------------
// The ISR header contains several useful macros the user may wish to use
//
#include "IRremoteInt.h"
//------------------------------------------------------------------------------
// Supported IR protocols
// Each protocol you include costs memory and, during decode, costs time
// Disable (set to 0) all the protocols you do not need/want!
//
#define DECODE_RC5 1
#define SEND_RC5 1
#define DECODE_RC6 1
#define SEND_RC6 1
#define DECODE_NEC 1
#define SEND_NEC 1
#define DECODE_SONY 1
#define SEND_SONY 1
#define DECODE_PANASONIC 1
#define SEND_PANASONIC 1
#define DECODE_JVC 1
#define SEND_JVC 1
#define DECODE_SAMSUNG 1
#define SEND_SAMSUNG 1
#define DECODE_WHYNTER 1
#define SEND_WHYNTER 1
#define DECODE_AIWA_RC_T501 1
#define SEND_AIWA_RC_T501 1
#define DECODE_LG 1
#define SEND_LG 1
#define DECODE_SANYO 1
#define SEND_SANYO 0 // NOT WRITTEN
#define DECODE_MITSUBISHI 1
#define SEND_MITSUBISHI 0 // NOT WRITTEN
#define DECODE_DISH 0 // NOT WRITTEN
#define SEND_DISH 1
#define DECODE_SHARP 0 // NOT WRITTEN
#define SEND_SHARP 1
#define DECODE_DENON 1
#define SEND_DENON 1
#define DECODE_PRONTO 0 // This function doe not logically make sense
#define SEND_PRONTO 1
#define DECODE_LEGO_PF 0 // NOT WRITTEN
#define SEND_LEGO_PF 1
//------------------------------------------------------------------------------
// When sending a Pronto code we request to send either the "once" code
// or the "repeat" code
// If the code requested does not exist we can request to fallback on the
// other code (the one we did not explicitly request)
//
// I would suggest that "fallback" will be the standard calling method
// The last paragraph on this page discusses the rationale of this idea:
// http://www.remotecentral.com/features/irdisp2.htm
//
#define PRONTO_ONCE false
#define PRONTO_REPEAT true
#define PRONTO_FALLBACK true
#define PRONTO_NOFALLBACK false
//------------------------------------------------------------------------------
// An enumerated list of all supported formats
// You do NOT need to remove entries from this list when disabling protocols!
//
typedef
enum {
UNKNOWN = -1,
UNUSED = 0,
RC5,
RC6,
NEC,
SONY,
PANASONIC,
JVC,
SAMSUNG,
WHYNTER,
AIWA_RC_T501,
LG,
SANYO,
MITSUBISHI,
DISH,
SHARP,
DENON,
PRONTO,
LEGO_PF,
}
decode_type_t;
//------------------------------------------------------------------------------
// Set DEBUG to 1 for lots of lovely debug output
//
#define DEBUG 0
//------------------------------------------------------------------------------
// Debug directives
//
#if DEBUG
# define DBG_PRINT(...) Serial.print(__VA_ARGS__)
# define DBG_PRINTLN(...) Serial.println(__VA_ARGS__)
#else
# define DBG_PRINT(...)
# define DBG_PRINTLN(...)
#endif
//------------------------------------------------------------------------------
// Mark & Space matching functions
//
int MATCH (int measured, int desired) ;
int MATCH_MARK (int measured_ticks, int desired_us) ;
int MATCH_SPACE (int measured_ticks, int desired_us) ;
//------------------------------------------------------------------------------
// Results returned from the decoder
//
class decode_results
{
public:
decode_type_t decode_type; // UNKNOWN, NEC, SONY, RC5, ...
unsigned int address; // Used by Panasonic & Sharp [16-bits]
unsigned long value; // Decoded value [max 32-bits]
int bits; // Number of bits in decoded value
volatile unsigned int *rawbuf; // Raw intervals in 50uS ticks
int rawlen; // Number of records in rawbuf
int overflow; // true iff IR raw code too long
};
//------------------------------------------------------------------------------
// Decoded value for NEC when a repeat code is received
//
#define REPEAT 0xFFFFFFFF
//------------------------------------------------------------------------------
// Main class for receiving IR
//
class IRrecv
{
public:
IRrecv (int recvpin) ;
IRrecv (int recvpin, int blinkpin);
void blink13 (int blinkflag) ;
int decode (decode_results *results) ;
void enableIRIn ( ) ;
bool isIdle ( ) ;
void resume ( ) ;
private:
long decodeHash (decode_results *results) ;
int compare (unsigned int oldval, unsigned int newval) ;
//......................................................................
# if (DECODE_RC5 || DECODE_RC6)
// This helper function is shared by RC5 and RC6
int getRClevel (decode_results *results, int *offset, int *used, int t1) ;
# endif
# if DECODE_RC5
bool decodeRC5 (decode_results *results) ;
# endif
# if DECODE_RC6
bool decodeRC6 (decode_results *results) ;
# endif
//......................................................................
# if DECODE_NEC
bool decodeNEC (decode_results *results) ;
# endif
//......................................................................
# if DECODE_SONY
bool decodeSony (decode_results *results) ;
# endif
//......................................................................
# if DECODE_PANASONIC
bool decodePanasonic (decode_results *results) ;
# endif
//......................................................................
# if DECODE_JVC
bool decodeJVC (decode_results *results) ;
# endif
//......................................................................
# if DECODE_SAMSUNG
bool decodeSAMSUNG (decode_results *results) ;
# endif
//......................................................................
# if DECODE_WHYNTER
bool decodeWhynter (decode_results *results) ;
# endif
//......................................................................
# if DECODE_AIWA_RC_T501
bool decodeAiwaRCT501 (decode_results *results) ;
# endif
//......................................................................
# if DECODE_LG
bool decodeLG (decode_results *results) ;
# endif
//......................................................................
# if DECODE_SANYO
bool decodeSanyo (decode_results *results) ;
# endif
//......................................................................
# if DECODE_MITSUBISHI
bool decodeMitsubishi (decode_results *results) ;
# endif
//......................................................................
# if DECODE_DISH
bool decodeDish (decode_results *results) ; // NOT WRITTEN
# endif
//......................................................................
# if DECODE_SHARP
bool decodeSharp (decode_results *results) ; // NOT WRITTEN
# endif
//......................................................................
# if DECODE_DENON
bool decodeDenon (decode_results *results) ;
# endif
//......................................................................
# if DECODE_LEGO_PF
bool decodeLegoPowerFunctions (decode_results *results) ;
# endif
} ;
//------------------------------------------------------------------------------
// Main class for sending IR
//
class IRsend
{
public:
IRsend () { }
void custom_delay_usec (unsigned long uSecs);
void enableIROut (int khz) ;
void mark (unsigned int usec) ;
void space (unsigned int usec) ;
void sendRaw (const unsigned int buf[], unsigned int len, unsigned int hz) ;
//......................................................................
# if SEND_RC5
void sendRC5 (unsigned long data, int nbits) ;
# endif
# if SEND_RC6
void sendRC6 (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_NEC
void sendNEC (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_SONY
void sendSony (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_PANASONIC
void sendPanasonic (unsigned int address, unsigned long data) ;
# endif
//......................................................................
# if SEND_JVC
// JVC does NOT repeat by sending a separate code (like NEC does).
// The JVC protocol repeats by skipping the header.
// To send a JVC repeat signal, send the original code value
// and set 'repeat' to true
void sendJVC (unsigned long data, int nbits, bool repeat) ;
# endif
//......................................................................
# if SEND_SAMSUNG
void sendSAMSUNG (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_WHYNTER
void sendWhynter (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_AIWA_RC_T501
void sendAiwaRCT501 (int code) ;
# endif
//......................................................................
# if SEND_LG
void sendLG (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_SANYO
void sendSanyo ( ) ; // NOT WRITTEN
# endif
//......................................................................
# if SEND_MISUBISHI
void sendMitsubishi ( ) ; // NOT WRITTEN
# endif
//......................................................................
# if SEND_DISH
void sendDISH (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_SHARP
void sendSharpRaw (unsigned long data, int nbits) ;
void sendSharp (unsigned int address, unsigned int command) ;
# endif
//......................................................................
# if SEND_DENON
void sendDenon (unsigned long data, int nbits) ;
# endif
//......................................................................
# if SEND_PRONTO
void sendPronto (char* code, bool repeat, bool fallback) ;
# endif
//......................................................................
# if SEND_LEGO_PF
void sendLegoPowerFunctions (uint16_t data, bool repeat = true) ;
# endif
} ;
#endif

View File

@@ -1,113 +0,0 @@
//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
//
// Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************
#ifndef IRremoteint_h
#define IRremoteint_h
//------------------------------------------------------------------------------
// Include the right Arduino header
//
#if defined(ARDUINO) && (ARDUINO >= 100)
# include <Arduino.h>
#else
# if !defined(IRPRONTO)
# include <WProgram.h>
# endif
#endif
//------------------------------------------------------------------------------
// This handles definition and access to global variables
//
#ifdef IR_GLOBAL
# define EXTERN
#else
# define EXTERN extern
#endif
//------------------------------------------------------------------------------
// Information for the Interrupt Service Routine
//
#define RAWBUF 101 // Maximum length of raw duration buffer
typedef
struct {
// The fields are ordered to reduce memory over caused by struct-padding
uint8_t rcvstate; // State Machine state
uint8_t recvpin; // Pin connected to IR data from detector
uint8_t blinkpin;
uint8_t blinkflag; // true -> enable blinking of pin on IR processing
uint8_t rawlen; // counter of entries in rawbuf
unsigned int timer; // State timer, counts 50uS ticks.
unsigned int rawbuf[RAWBUF]; // raw data
uint8_t overflow; // Raw buffer overflow occurred
}
irparams_t;
// ISR State-Machine : Receiver States
#define STATE_IDLE 2
#define STATE_MARK 3
#define STATE_SPACE 4
#define STATE_STOP 5
#define STATE_OVERFLOW 6
// Allow all parts of the code access to the ISR data
// NB. The data can be changed by the ISR at any time, even mid-function
// Therefore we declare it as "volatile" to stop the compiler/CPU caching it
EXTERN volatile irparams_t irparams;
//------------------------------------------------------------------------------
// Defines for setting and clearing register bits
//
#ifndef cbi
# define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
# define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
//------------------------------------------------------------------------------
// Pulse parms are ((X*50)-100) for the Mark and ((X*50)+100) for the Space.
// First MARK is the one after the long gap
// Pulse parameters in uSec
//
// Due to sensor lag, when received, Marks tend to be 100us too long and
// Spaces tend to be 100us too short
#define MARK_EXCESS 100
// Upper and Lower percentage tolerances in measurements
#define TOLERANCE 25
#define LTOL (1.0 - (TOLERANCE/100.))
#define UTOL (1.0 + (TOLERANCE/100.))
// Minimum gap between IR transmissions
#define _GAP 5000
#define GAP_TICKS (_GAP/USECPERTICK)
#define TICKS_LOW(us) ((int)(((us)*LTOL/USECPERTICK)))
#define TICKS_HIGH(us) ((int)(((us)*UTOL/USECPERTICK + 1)))
//------------------------------------------------------------------------------
// IR detector output is active low
//
#define MARK 0
#define SPACE 1
// All board specific stuff has been moved to its own file, included here.
#include "boarddefs.h"
#endif

View File

@@ -1,25 +0,0 @@
**Board:** ARDUINO UNO
**Library Version:** 2.1.0
**Protocol:** Sony (if any)
**Code Block:**
```c
#include <IRremote.h>
.....
```
Use [a gist](gist.github.com) if the code exceeds 30 lines
**checklist:**
- [] I have **read** the README.md file thoroughly
- [] I have searched existing issues to see if there is anything I have missed.
- [] The latest [release](https://github.com/z3t0/Arduino-IRremote/releases/latest) is used
- [] Any code referenced is provided and if over 30 lines a gist is linked INSTEAD of it being pasted in here
- [] The title of the issue is helpful and relevant
** We will start to close issues that do not follow these guidelines as it doesn't help the contributors who spend time trying to solve issues if the community ignores guidelines!**
The above is a short template allowing you to make detailed issues!

View File

@@ -1,458 +0,0 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@@ -1,89 +0,0 @@
# IRremote Arduino Library
[![Build Status](https://travis-ci.org/z3t0/Arduino-IRremote.svg?branch=master)](https://travis-ci.org/z3t0/Arduino-IRremote)
[![Join the chat at https://gitter.im/z3t0/Arduino-IRremote](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/z3t0/Arduino-IRremote?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
This library enables you to send and receive using infra-red signals on an Arduino.
Tutorials and more information will be made available on [the official homepage](http://z3t0.github.io/Arduino-IRremote/).
## Version - 2.2.3
## Installation
1. Navigate to the [Releases](https://github.com/z3t0/Arduino-IRremote/releases) page.
2. Download the latest release.
3. Extract the zip file
4. Move the "IRremote" folder that has been extracted to your libraries directory.
5. Make sure to delete Arduino_Root/libraries/RobotIRremote. Where Arduino_Root refers to the install directory of Arduino. The library RobotIRremote has similar definitions to IRremote and causes errors.
## FAQ
- IR does not work right when I use Neopixels (aka WS2811/WS2812/WS2812B)
Whether you use the Adafruit Neopixel lib, or FastLED, interrupts get disabled on many lower end CPUs like the basic arduinos. In turn, this stops the IR interrupt handler from running when it needs to. There are some solutions to this on some processors, [see this page from Marc MERLIN](http://marc.merlins.org/perso/arduino/post_2017-04-03_Arduino-328P-Uno-Teensy3_1-ESP8266-ESP32-IR-and-Neopixels.html)
## Supported Boards
- Arduino Uno / Mega / Leonardo / Duemilanove / Diecimila / LilyPad / Mini / Fio / Nano etc.
- Teensy 1.0 / 1.0++ / 2.0 / 2++ / 3.0 / 3.1 / Teensy-LC; Credits: @PaulStoffregen (Teensy Team)
- Sanguino
- ATmega8, 48, 88, 168, 328
- ATmega8535, 16, 32, 164, 324, 644, 1284,
- ATmega64, 128
- ATtiny 84 / 85
- ESP32 (receive only)
- ESP8266 is supported in a fork based on an old codebase that isn't as recent, but it works reasonably well given that perfectly timed sub millisecond interrupts are different on that chip. See https://github.com/markszabo/IRremoteESP8266
We are open to suggestions for adding support to new boards, however we highly recommend you contact your supplier first and ask them to provide support from their side.
### Hardware specifications
| Board/CPU | Send Pin | Timers |
|--------------------------------------------------------------------------|---------------------|-------------------|
| [ATtiny84](https://github.com/SpenceKonde/ATTinyCore) | **6** | **1** |
| [ATtiny85](https://github.com/SpenceKonde/ATTinyCore) | **1** | **TINY0** |
| [ATmega8](https://github.com/MCUdude/MiniCore) | **9** | **1** |
| Atmega32u4 | 5, 9, **13** | 1, 3, **4** |
| [ATmega48, ATmega88, ATmega168, ATmega328](https://github.com/MCUdude/MiniCore) | **3**, 9 | 1, **2** |
| [ATmega1284](https://github.com/MCUdude/MightyCore) | 13, 14, 6 | 1, **2**, 3 |
| [ATmega164, ATmega324, ATmega644](https://github.com/MCUdude/MightyCore) | 13, **14** | 1, **2** |
| [ATmega8535 ATmega16, ATmega32](https://github.com/MCUdude/MightyCore) | **13** | **1** |
| [ATmega64, ATmega128](https://github.com/MCUdude/MegaCore) | **13** | **1** |
| ATmega1280, ATmega2560 | 5, 6, **9**, 11, 46 | 1, **2**, 3, 4, 5 |
| [ESP32](http://esp32.net/) | N/A (not supported) | **1** |
| [Teensy 1.0](https://www.pjrc.com/teensy/) | **17** | **1** |
| [Teensy 2.0](https://www.pjrc.com/teensy/) | 9, **10**, 14 | 1, 3, **4_HS** |
| [Teensy++ 1.0 / 2.0](https://www.pjrc.com/teensy/) | **1**, 16, 25 | 1, **2**, 3 |
| [Teensy 3.0 / 3.1](https://www.pjrc.com/teensy/) | **5** | **CMT** |
| [Teensy-LC](https://www.pjrc.com/teensy/) | **16** | **TPM1** |
### Experimental patches
The following are strictly community supported patches that have yet to make it into mainstream. If you have issues feel free to ask here. If it works well then let us know!
[Arduino 101](https://github.com/z3t0/Arduino-IRremote/pull/481#issuecomment-311243146)
The table above lists the currently supported timers and corresponding send pins, many of these can have additional pins opened up and we are open to requests if a need arises for other pins.
## Usage
- TODO (Check examples for now)
## Contributing
If you want to contribute to this project:
- Report bugs and errors
- Ask for enhancements
- Create issues and pull requests
- Tell other people about this library
- Contribute new protocols
Check [here](Contributing.md) for some guidelines.
## Contact
Email: zetoslab@gmail.com
Please only email me if it is more appropriate than creating an Issue / PR. I **will** not respond to requests for adding support for particular boards, unless of course you are the creator of the board and would like to cooperate on the project. I will also **ignore** any emails asking me to tell you how to implement your ideas. However, if you have a private inquiry that you would only apply to you and you would prefer it to be via email, by all means.
## Contributors
Check [here](Contributors.md)
## Copyright
Copyright 2009-2012 Ken Shirriff

View File

@@ -1,577 +0,0 @@
//******************************************************************************
// IRremote
// Version 2.0.1 June, 2015
// Copyright 2009 Ken Shirriff
// For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
// This file contains all board specific information. It was previously contained within
// IRremoteInt.h
// Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
//
// Interrupt code based on NECIRrcv by Joe Knapp
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
// Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
//
// JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
// Whynter A/C ARC-110WD added by Francesco Meschia
//******************************************************************************
#ifndef boarddefs_h
#define boarddefs_h
//------------------------------------------------------------------------------
// Defines for blinking the LED
//
#if defined(CORE_LED0_PIN)
# define BLINKLED CORE_LED0_PIN
# define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
# define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define BLINKLED 13
# define BLINKLED_ON() (PORTB |= B10000000)
# define BLINKLED_OFF() (PORTB &= B01111111)
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
# define BLINKLED 0
# define BLINKLED_ON() (PORTD |= B00000001)
# define BLINKLED_OFF() (PORTD &= B11111110)
// No system LED on ESP32, disable blinking
#elif defined(ESP32)
# define BLINKLED 255
# define BLINKLED_ON() 1
# define BLINKLED_OFF() 1
#else
# define BLINKLED 13
# define BLINKLED_ON() (PORTB |= B00100000)
# define BLINKLED_OFF() (PORTB &= B11011111)
#endif
//------------------------------------------------------------------------------
// CPU Frequency
//
#ifdef F_CPU
# define SYSCLOCK F_CPU // main Arduino clock
#else
# define SYSCLOCK 16000000 // main Arduino clock
#endif
// microseconds per clock interrupt tick
#define USECPERTICK 50
//------------------------------------------------------------------------------
// Define which timer to use
//
// Uncomment the timer you wish to use on your board.
// If you are using another library which uses timer2, you have options to
// switch IRremote to use a different timer.
//
// Arduino Mega
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define IR_USE_TIMER1 // tx = pin 11
#define IR_USE_TIMER2 // tx = pin 9
//#define IR_USE_TIMER3 // tx = pin 5
//#define IR_USE_TIMER4 // tx = pin 6
//#define IR_USE_TIMER5 // tx = pin 46
// Teensy 1.0
#elif defined(__AVR_AT90USB162__)
#define IR_USE_TIMER1 // tx = pin 17
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
//#define IR_USE_TIMER1 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 9
#define IR_USE_TIMER4_HS // tx = pin 10
// Teensy 3.0 / Teensy 3.1
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define IR_USE_TIMER_CMT // tx = pin 5
// Teensy-LC
#elif defined(__MKL26Z64__)
#define IR_USE_TIMER_TPM1 // tx = pin 16
// Teensy++ 1.0 & 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
//#define IR_USE_TIMER1 // tx = pin 25
#define IR_USE_TIMER2 // tx = pin 1
//#define IR_USE_TIMER3 // tx = pin 16
// MightyCore - ATmega1284
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 6
// MightyCore - ATmega164, ATmega324, ATmega644
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
//MegaCore - ATmega64, ATmega128
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
#define IR_USE_TIMER1 // tx = pin 13
// MightyCore - ATmega8535, ATmega16, ATmega32
#elif defined(__AVR_ATmega8535__) || defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__)
#define IR_USE_TIMER1 // tx = pin 13
// Atmega8
#elif defined(__AVR_ATmega8__)
#define IR_USE_TIMER1 // tx = pin 9
// ATtiny84
#elif defined(__AVR_ATtiny84__)
#define IR_USE_TIMER1 // tx = pin 6
//ATtiny85
#elif defined(__AVR_ATtiny85__)
#define IR_USE_TIMER_TINY0 // tx = pin 1
#elif defined(ESP32)
#define IR_TIMER_USE_ESP32
#else
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, Nano, etc
// ATmega48, ATmega88, ATmega168, ATmega328
//#define IR_USE_TIMER1 // tx = pin 9
#define IR_USE_TIMER2 // tx = pin 3
#endif
//------------------------------------------------------------------------------
// Defines for Timer
//---------------------------------------------------------
// Timer2 (8 bits)
//
#if defined(IR_USE_TIMER2)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
#define TIMER_INTR_NAME TIMER2_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR2A = _BV(WGM20); \
TCCR2B = _BV(WGM22) | _BV(CS20); \
OCR2A = pwmval; \
OCR2B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
//-----------------
#if (TIMER_COUNT_TOP < 256)
# define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS20); \
OCR2A = TIMER_COUNT_TOP; \
TCNT2 = 0; \
})
#else
# define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS21); \
OCR2A = TIMER_COUNT_TOP / 8; \
TCNT2 = 0; \
})
#endif
//-----------------
#if defined(CORE_OC2B_PIN)
# define TIMER_PWM_PIN CORE_OC2B_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 9 // Arduino Mega
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) \
|| defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__)
# define TIMER_PWM_PIN 14 // MightyCore
#else
# define TIMER_PWM_PIN 3 // Arduino Duemilanove, Diecimila, LilyPad, etc
#endif // ATmega48, ATmega88, ATmega168, ATmega328
//---------------------------------------------------------
// Timer1 (16 bits)
//
#elif defined(IR_USE_TIMER1)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))
//-----------------
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega8535__) \
|| defined(__AVR_ATmega16__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
# define TIMER_ENABLE_INTR (TIMSK |= _BV(OCIE1A))
# define TIMER_DISABLE_INTR (TIMSK &= ~_BV(OCIE1A))
#else
# define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
# define TIMER_DISABLE_INTR (TIMSK1 = 0)
#endif
//-----------------
#define TIMER_INTR_NAME TIMER1_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR1A = _BV(WGM11); \
TCCR1B = _BV(WGM13) | _BV(CS10); \
ICR1 = pwmval; \
OCR1A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR1A = 0; \
TCCR1B = _BV(WGM12) | _BV(CS10); \
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT1 = 0; \
})
//-----------------
#if defined(CORE_OC1A_PIN)
# define TIMER_PWM_PIN CORE_OC1A_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 11 // Arduino Mega
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
# define TIMER_PWM_PIN 13 // MegaCore
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) \
|| defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) \
|| defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) \
|| defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega164A__) \
|| defined(__AVR_ATmega164P__) || defined(__AVR_ATmega32__) \
|| defined(__AVR_ATmega16__) || defined(__AVR_ATmega8535__)
# define TIMER_PWM_PIN 13 // MightyCore
#elif defined(__AVR_ATtiny84__)
# define TIMER_PWM_PIN 6
#else
# define TIMER_PWM_PIN 9 // Arduino Duemilanove, Diecimila, LilyPad, etc
#endif // ATmega48, ATmega88, ATmega168, ATmega328
//---------------------------------------------------------
// Timer3 (16 bits)
//
#elif defined(IR_USE_TIMER3)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
#define TIMER_INTR_NAME TIMER3_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR3A = _BV(WGM31); \
TCCR3B = _BV(WGM33) | _BV(CS30); \
ICR3 = pwmval; \
OCR3A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR3A = 0; \
TCCR3B = _BV(WGM32) | _BV(CS30); \
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT3 = 0; \
})
//-----------------
#if defined(CORE_OC3A_PIN)
# define TIMER_PWM_PIN CORE_OC3A_PIN // Teensy
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 5 // Arduino Mega
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
# define TIMER_PWM_PIN 6 // MightyCore
#else
# error "Please add OC3A pin number here\n"
#endif
//---------------------------------------------------------
// Timer4 (10 bits, high speed option)
//
#elif defined(IR_USE_TIMER4_HS)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_OVF_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = (1<<PWM4A); \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = (1<<WGM40); \
TCCR4E = 0; \
TC4H = pwmval >> 8; \
OCR4C = pwmval; \
TC4H = (pwmval / 3) >> 8; \
OCR4A = (pwmval / 3) & 255; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = 0; \
TCCR4E = 0; \
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
TC4H = 0; \
TCNT4 = 0; \
})
//-----------------
#if defined(CORE_OC4A_PIN)
# define TIMER_PWM_PIN CORE_OC4A_PIN // Teensy
#elif defined(__AVR_ATmega32U4__)
# define TIMER_PWM_PIN 13 // Leonardo
#else
# error "Please add OC4A pin number here\n"
#endif
//---------------------------------------------------------
// Timer4 (16 bits)
//
#elif defined(IR_USE_TIMER4)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = _BV(WGM41); \
TCCR4B = _BV(WGM43) | _BV(CS40); \
ICR4 = pwmval; \
OCR4A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(WGM42) | _BV(CS40); \
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT4 = 0; \
})
//-----------------
#if defined(CORE_OC4A_PIN)
# define TIMER_PWM_PIN CORE_OC4A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 6 // Arduino Mega
#else
# error "Please add OC4A pin number here\n"
#endif
//---------------------------------------------------------
// Timer5 (16 bits)
//
#elif defined(IR_USE_TIMER5)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
#define TIMER_INTR_NAME TIMER5_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR5A = _BV(WGM51); \
TCCR5B = _BV(WGM53) | _BV(CS50); \
ICR5 = pwmval; \
OCR5A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR5A = 0; \
TCCR5B = _BV(WGM52) | _BV(CS50); \
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT5 = 0; \
})
//-----------------
#if defined(CORE_OC5A_PIN)
# define TIMER_PWM_PIN CORE_OC5A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
# define TIMER_PWM_PIN 46 // Arduino Mega
#else
# error "Please add OC5A pin number here\n"
#endif
//---------------------------------------------------------
// Special carrier modulator timer
//
#elif defined(IR_USE_TIMER_CMT)
#define TIMER_RESET ({ \
uint8_t tmp __attribute__((unused)) = CMT_MSC; \
CMT_CMD2 = 30; \
})
#define TIMER_ENABLE_PWM do { \
CORE_PIN5_CONFIG = PORT_PCR_MUX(2) | PORT_PCR_DSE | PORT_PCR_SRE; \
} while(0)
#define TIMER_DISABLE_PWM do { \
CORE_PIN5_CONFIG = PORT_PCR_MUX(1) | PORT_PCR_DSE | PORT_PCR_SRE; \
} while(0)
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_CMT)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_CMT)
#define TIMER_INTR_NAME cmt_isr
//-----------------
#ifdef ISR
# undef ISR
#endif
#define ISR(f) void f(void)
//-----------------
#define CMT_PPS_DIV ((F_BUS + 7999999) / 8000000)
#if F_BUS < 8000000
#error IRremote requires at least 8 MHz on Teensy 3.x
#endif
//-----------------
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
SIM_SOPT2 |= SIM_SOPT2_PTD7PAD; \
CMT_PPS = CMT_PPS_DIV - 1; \
CMT_CGH1 = ((F_BUS / CMT_PPS_DIV / 3000) + ((val)/2)) / (val); \
CMT_CGL1 = ((F_BUS / CMT_PPS_DIV / 1500) + ((val)/2)) / (val); \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = 0; \
CMT_OC = 0x60; \
CMT_MSC = 0x01; \
})
#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
CMT_PPS = CMT_PPS_DIV - 1; \
CMT_CGH1 = 1; \
CMT_CGL1 = 1; \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = (F_BUS / 160000 + CMT_PPS_DIV / 2) / CMT_PPS_DIV - 31; \
CMT_OC = 0; \
CMT_MSC = 0x03; \
})
#define TIMER_PWM_PIN 5
// defines for TPM1 timer on Teensy-LC
#elif defined(IR_USE_TIMER_TPM1)
#define TIMER_RESET FTM1_SC |= FTM_SC_TOF;
#define TIMER_ENABLE_PWM CORE_PIN16_CONFIG = PORT_PCR_MUX(3)|PORT_PCR_DSE|PORT_PCR_SRE
#define TIMER_DISABLE_PWM CORE_PIN16_CONFIG = PORT_PCR_MUX(1)|PORT_PCR_SRE
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_FTM1)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_FTM1)
#define TIMER_INTR_NAME ftm1_isr
#ifdef ISR
#undef ISR
#endif
#define ISR(f) void f(void)
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC6 |= SIM_SCGC6_TPM1; \
FTM1_SC = 0; \
FTM1_CNT = 0; \
FTM1_MOD = (F_PLL/2000) / val - 1; \
FTM1_C0V = (F_PLL/6000) / val - 1; \
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); \
})
#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC6 |= SIM_SCGC6_TPM1; \
FTM1_SC = 0; \
FTM1_CNT = 0; \
FTM1_MOD = (F_PLL/40000) - 1; \
FTM1_C0V = 0; \
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0) | FTM_SC_TOF | FTM_SC_TOIE; \
})
#define TIMER_PWM_PIN 16
// defines for timer_tiny0 (8 bits)
#elif defined(IR_USE_TIMER_TINY0)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR0A |= _BV(COM0B1))
#define TIMER_DISABLE_PWM (TCCR0A &= ~(_BV(COM0B1)))
#define TIMER_ENABLE_INTR (TIMSK |= _BV(OCIE0A))
#define TIMER_DISABLE_INTR (TIMSK &= ~(_BV(OCIE0A)))
#define TIMER_INTR_NAME TIMER0_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR0A = _BV(WGM00); \
TCCR0B = _BV(WGM02) | _BV(CS00); \
OCR0A = pwmval; \
OCR0B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
#if (TIMER_COUNT_TOP < 256)
#define TIMER_CONFIG_NORMAL() ({ \
TCCR0A = _BV(WGM01); \
TCCR0B = _BV(CS00); \
OCR0A = TIMER_COUNT_TOP; \
TCNT0 = 0; \
})
#else
#define TIMER_CONFIG_NORMAL() ({ \
TCCR0A = _BV(WGM01); \
TCCR0B = _BV(CS01); \
OCR0A = TIMER_COUNT_TOP / 8; \
TCNT0 = 0; \
})
#endif
#define TIMER_PWM_PIN 1 /* ATtiny85 */
//---------------------------------------------------------
// ESP32 (ESP8266 should likely be added here too)
//
// ESP32 has it own timer API and does not use these macros, but to avoid ifdef'ing
// them out in the common code, they are defined to no-op. This allows the code to compile
// (which it wouldn't otherwise) but irsend will not work until ESP32 specific code is written
// for that -- merlin
// As a warning, sending timing specific code from an ESP32 can be challenging if you need 100%
// reliability because the arduino code may be interrupted and cause your sent waveform to be the
// wrong length. This is specifically an issue for neopixels which require 800Khz resolution.
// IR may just work as is with the common code since it's lower frequency, but if not, the other
// way to do this on ESP32 is using the RMT built in driver like in this incomplete library below
// https://github.com/ExploreEmbedded/ESP32_RMT
#elif defined(IR_TIMER_USE_ESP32)
#define TIMER_RESET
#define TIMER_ENABLE_PWM
#define TIMER_DISABLE_PWM Serial.println("IRsend not implemented for ESP32 yet");
#define TIMER_ENABLE_INTR
#define TIMER_DISABLE_INTR
#define TIMER_INTR_NAME
//---------------------------------------------------------
// Unknown Timer
//
#else
# error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
#endif
#endif // ! boarddefs_h

View File

@@ -1,78 +0,0 @@
## 2.3.3 - 2017/03/31
- Added ESP32 IR receive support [PR #427](https://github.com/z3t0/Arduino-IRremote/pull/425)
## 2.2.3 - 2017/03/27
- Fix calculation of pause length in LEGO PF protocol [PR #427](https://github.com/z3t0/Arduino-IRremote/pull/427)
## 2.2.2 - 2017/01/20
- Fixed naming bug [PR #398](https://github.com/z3t0/Arduino-IRremote/pull/398)
## 2.2.1 - 2016/07/27
- Added tests for Lego Power Functions Protocol [PR #336](https://github.com/z3t0/Arduino-IRremote/pull/336)
## 2.2.0 - 2016/06/28
- Added support for ATmega8535
- Added support for ATmega16
- Added support for ATmega32
- Added support for ATmega164
- Added support for ATmega324
- Added support for ATmega644
- Added support for ATmega1284
- Added support for ATmega64
- Added support for ATmega128
[PR](https://github.com/z3t0/Arduino-IRremote/pull/324)
## 2.1.1 - 2016/05/04
- Added Lego Power Functions Protocol [PR #309](https://github.com/z3t0/Arduino-IRremote/pull/309)
## 2.1.0 - 2016/02/20
- Improved Debugging [PR #258](https://github.com/z3t0/Arduino-IRremote/pull/258)
- Display TIME instead of TICKS [PR #258](https://github.com/z3t0/Arduino-IRremote/pull/258)
## 2.0.4 - 2016/02/20
- Add Panasonic and JVC to IRrecord example [PR](https://github.com/z3t0/Arduino-IRremote/pull/54)
## 2.0.3 - 2016/02/20
- Change IRSend Raw parameter to const [PR](https://github.com/z3t0/Arduino-IRremote/pull/227)
## 2.0.2 - 2015/12/02
- Added IRremoteInfo Sketch - [PR](https://github.com/z3t0/Arduino-IRremote/pull/241)
- Enforcing changelog.md
## 2.0.1 - 2015/07/26 - [Release](https://github.com/shirriff/Arduino-IRremote/releases/tag/BETA)
### Changes
- Updated README
- Updated Contributors
- Fixed #110 Mess
- Created Gitter Room
- Added Gitter Badge
- Standardised Code Base
- Clean Debug Output
- Optimized Send Loops
- Modularized Design
- Optimized and Updated Examples
- Improved Documentation
- Fixed and Improved many coding errors
- Fixed Aiwa RC-T501 Decoding
- Fixed Interrupt on ATmega8
- Switched to Stable Release of @PlatformIO
### Additions
- Added Aiwa RC-T501 Protocol
- Added Denon Protocol
- Added Pronto Support
- Added Library Properties
- Added Template For New Protocols
- Added this changelog
- Added Teensy LC Support
- Added ATtiny84 Support
- Added ATtiny85 Support
- Added isIdle method
### Deletions
- Removed (Fixed) #110
- Broke Teensy 3 / 3.1 Support
### Not Working
- Teensy 3 / 3.1 Support is in Development

View File

@@ -1,26 +0,0 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include "IRremote.h"
#define POWER 0x7F80
#define AIWA_RC_T501
IRsend irsend;
void setup() {
Serial.begin(9600);
Serial.println("Arduino Ready");
}
void loop() {
if (Serial.read() != -1) {
irsend.sendAiwaRCT501(POWER);
delay(60); // Optional
}
}

View File

@@ -1,183 +0,0 @@
/*
* IRrecord: record and play back IR signals as a minimal
* An IR detector/demodulator must be connected to the input RECV_PIN.
* An IR LED must be connected to the output PWM pin 3.
* A button must be connected to the input BUTTON_PIN; this is the
* send button.
* A visible LED can be connected to STATUS_PIN to provide status.
*
* The logic is:
* If the button is pressed, send the IR code.
* If an IR code is received, record it.
*
* Version 0.11 September, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int BUTTON_PIN = 12;
int STATUS_PIN = 13;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
pinMode(BUTTON_PIN, INPUT);
pinMode(STATUS_PIN, OUTPUT);
}
// Storage for the recorded code
int codeType = -1; // The type of code
unsigned long codeValue; // The code value if not raw
unsigned int rawCodes[RAWBUF]; // The durations if raw
int codeLen; // The length of the code
int toggle = 0; // The RC5/6 toggle state
// Stores the code for later playback
// Most of this code is just logging
void storeCode(decode_results *results) {
codeType = results->decode_type;
//int count = results->rawlen;
if (codeType == UNKNOWN) {
Serial.println("Received unknown code, saving as raw");
codeLen = results->rawlen - 1;
// To store raw codes:
// Drop first value (gap)
// Convert from ticks to microseconds
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
for (int i = 1; i <= codeLen; i++) {
if (i % 2) {
// Mark
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS;
Serial.print(" m");
}
else {
// Space
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS;
Serial.print(" s");
}
Serial.print(rawCodes[i - 1], DEC);
}
Serial.println("");
}
else {
if (codeType == NEC) {
Serial.print("Received NEC: ");
if (results->value == REPEAT) {
// Don't record a NEC repeat value as that's useless.
Serial.println("repeat; ignoring.");
return;
}
}
else if (codeType == SONY) {
Serial.print("Received SONY: ");
}
else if (codeType == PANASONIC) {
Serial.print("Received PANASONIC: ");
}
else if (codeType == JVC) {
Serial.print("Received JVC: ");
}
else if (codeType == RC5) {
Serial.print("Received RC5: ");
}
else if (codeType == RC6) {
Serial.print("Received RC6: ");
}
else {
Serial.print("Unexpected codeType ");
Serial.print(codeType, DEC);
Serial.println("");
}
Serial.println(results->value, HEX);
codeValue = results->value;
codeLen = results->bits;
}
}
void sendCode(int repeat) {
if (codeType == NEC) {
if (repeat) {
irsend.sendNEC(REPEAT, codeLen);
Serial.println("Sent NEC repeat");
}
else {
irsend.sendNEC(codeValue, codeLen);
Serial.print("Sent NEC ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == SONY) {
irsend.sendSony(codeValue, codeLen);
Serial.print("Sent Sony ");
Serial.println(codeValue, HEX);
}
else if (codeType == PANASONIC) {
irsend.sendPanasonic(codeValue, codeLen);
Serial.print("Sent Panasonic");
Serial.println(codeValue, HEX);
}
else if (codeType == JVC) {
irsend.sendJVC(codeValue, codeLen, false);
Serial.print("Sent JVC");
Serial.println(codeValue, HEX);
}
else if (codeType == RC5 || codeType == RC6) {
if (!repeat) {
// Flip the toggle bit for a new button press
toggle = 1 - toggle;
}
// Put the toggle bit into the code to send
codeValue = codeValue & ~(1 << (codeLen - 1));
codeValue = codeValue | (toggle << (codeLen - 1));
if (codeType == RC5) {
Serial.print("Sent RC5 ");
Serial.println(codeValue, HEX);
irsend.sendRC5(codeValue, codeLen);
}
else {
irsend.sendRC6(codeValue, codeLen);
Serial.print("Sent RC6 ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == UNKNOWN /* i.e. raw */) {
// Assume 38 KHz
irsend.sendRaw(rawCodes, codeLen, 38);
Serial.println("Sent raw");
}
}
int lastButtonState;
void loop() {
// If button pressed, send the code.
int buttonState = digitalRead(BUTTON_PIN);
if (lastButtonState == HIGH && buttonState == LOW) {
Serial.println("Released");
irrecv.enableIRIn(); // Re-enable receiver
}
if (buttonState) {
Serial.println("Pressed, sending");
digitalWrite(STATUS_PIN, HIGH);
sendCode(lastButtonState == buttonState);
digitalWrite(STATUS_PIN, LOW);
delay(50); // Wait a bit between retransmissions
}
else if (irrecv.decode(&results)) {
digitalWrite(STATUS_PIN, HIGH);
storeCode(&results);
irrecv.resume(); // resume receiver
digitalWrite(STATUS_PIN, LOW);
}
lastButtonState = buttonState;
}

View File

@@ -1,33 +0,0 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
// In case the interrupt driver crashes on setup, give a clue
// to the user what's going on.
Serial.println("Enabling IRin");
irrecv.enableIRIn(); // Start the receiver
Serial.println("Enabled IRin");
}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
irrecv.resume(); // Receive the next value
}
delay(100);
}

View File

@@ -1,95 +0,0 @@
/*
* IRremote: IRrecvDump - dump details of IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
* LG added by Darryl Smith (based on the JVC protocol)
*/
#include <IRremote.h>
/*
* Default is Arduino pin D11.
* You can change this to another available Arduino Pin.
* Your IR receiver should be connected to the pin defined here
*/
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
void dump(decode_results *results) {
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.print("Unknown encoding: ");
}
else if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
else if (results->decode_type == PANASONIC) {
Serial.print("Decoded PANASONIC - Address: ");
Serial.print(results->address, HEX);
Serial.print(" Value: ");
}
else if (results->decode_type == LG) {
Serial.print("Decoded LG: ");
}
else if (results->decode_type == JVC) {
Serial.print("Decoded JVC: ");
}
else if (results->decode_type == AIWA_RC_T501) {
Serial.print("Decoded AIWA RC T501: ");
}
else if (results->decode_type == WHYNTER) {
Serial.print("Decoded Whynter: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 1; i < count; i++) {
if (i & 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.write('-');
Serial.print((unsigned long) results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println();
}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
dump(&results);
irrecv.resume(); // Receive the next value
}
}

View File

@@ -1,177 +0,0 @@
//------------------------------------------------------------------------------
// Include the IRremote library header
//
#include <IRremote.h>
//------------------------------------------------------------------------------
// Tell IRremote which Arduino pin is connected to the IR Receiver (TSOP4838)
//
int recvPin = 11;
IRrecv irrecv(recvPin);
//+=============================================================================
// Configure the Arduino
//
void setup ( )
{
Serial.begin(9600); // Status message will be sent to PC at 9600 baud
irrecv.enableIRIn(); // Start the receiver
}
//+=============================================================================
// Display IR code
//
void ircode (decode_results *results)
{
// Panasonic has an Address
if (results->decode_type == PANASONIC) {
Serial.print(results->address, HEX);
Serial.print(":");
}
// Print Code
Serial.print(results->value, HEX);
}
//+=============================================================================
// Display encoding type
//
void encoding (decode_results *results)
{
switch (results->decode_type) {
default:
case UNKNOWN: Serial.print("UNKNOWN"); break ;
case NEC: Serial.print("NEC"); break ;
case SONY: Serial.print("SONY"); break ;
case RC5: Serial.print("RC5"); break ;
case RC6: Serial.print("RC6"); break ;
case DISH: Serial.print("DISH"); break ;
case SHARP: Serial.print("SHARP"); break ;
case JVC: Serial.print("JVC"); break ;
case SANYO: Serial.print("SANYO"); break ;
case MITSUBISHI: Serial.print("MITSUBISHI"); break ;
case SAMSUNG: Serial.print("SAMSUNG"); break ;
case LG: Serial.print("LG"); break ;
case WHYNTER: Serial.print("WHYNTER"); break ;
case AIWA_RC_T501: Serial.print("AIWA_RC_T501"); break ;
case PANASONIC: Serial.print("PANASONIC"); break ;
case DENON: Serial.print("Denon"); break ;
}
}
//+=============================================================================
// Dump out the decode_results structure.
//
void dumpInfo (decode_results *results)
{
// Check if the buffer overflowed
if (results->overflow) {
Serial.println("IR code too long. Edit IRremoteInt.h and increase RAWBUF");
return;
}
// Show Encoding standard
Serial.print("Encoding : ");
encoding(results);
Serial.println("");
// Show Code & length
Serial.print("Code : ");
ircode(results);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
//+=============================================================================
// Dump out the decode_results structure.
//
void dumpRaw (decode_results *results)
{
// Print Raw data
Serial.print("Timing[");
Serial.print(results->rawlen-1, DEC);
Serial.println("]: ");
for (int i = 1; i < results->rawlen; i++) {
unsigned long x = results->rawbuf[i] * USECPERTICK;
if (!(i & 1)) { // even
Serial.print("-");
if (x < 1000) Serial.print(" ") ;
if (x < 100) Serial.print(" ") ;
Serial.print(x, DEC);
} else { // odd
Serial.print(" ");
Serial.print("+");
if (x < 1000) Serial.print(" ") ;
if (x < 100) Serial.print(" ") ;
Serial.print(x, DEC);
if (i < results->rawlen-1) Serial.print(", "); //',' not needed for last one
}
if (!(i % 8)) Serial.println("");
}
Serial.println(""); // Newline
}
//+=============================================================================
// Dump out the decode_results structure.
//
void dumpCode (decode_results *results)
{
// Start declaration
Serial.print("unsigned int "); // variable type
Serial.print("rawData["); // array name
Serial.print(results->rawlen - 1, DEC); // array size
Serial.print("] = {"); // Start declaration
// Dump data
for (int i = 1; i < results->rawlen; i++) {
Serial.print(results->rawbuf[i] * USECPERTICK, DEC);
if ( i < results->rawlen-1 ) Serial.print(","); // ',' not needed on last one
if (!(i & 1)) Serial.print(" ");
}
// End declaration
Serial.print("};"); //
// Comment
Serial.print(" // ");
encoding(results);
Serial.print(" ");
ircode(results);
// Newline
Serial.println("");
// Now dump "known" codes
if (results->decode_type != UNKNOWN) {
// Some protocols have an address
if (results->decode_type == PANASONIC) {
Serial.print("unsigned int addr = 0x");
Serial.print(results->address, HEX);
Serial.println(";");
}
// All protocols have data
Serial.print("unsigned int data = 0x");
Serial.print(results->value, HEX);
Serial.println(";");
}
}
//+=============================================================================
// The repeating section of the code
//
void loop ( )
{
decode_results results; // Somewhere to store the results
if (irrecv.decode(&results)) { // Grab an IR code
dumpInfo(&results); // Output the results
dumpRaw(&results); // Output the results in RAW format
dumpCode(&results); // Output the results as source code
Serial.println(""); // Blank line between entries
irrecv.resume(); // Prepare for the next value
}
}

View File

@@ -1,85 +0,0 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int RELAY_PIN = 4;
IRrecv irrecv(RECV_PIN);
decode_results results;
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
void setup()
{
pinMode(RELAY_PIN, OUTPUT);
pinMode(13, OUTPUT);
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
int on = 0;
unsigned long last = millis();
void loop() {
if (irrecv.decode(&results)) {
// If it's been at least 1/4 second since the last
// IR received, toggle the relay
if (millis() - last > 250) {
on = !on;
digitalWrite(RELAY_PIN, on ? HIGH : LOW);
digitalWrite(13, on ? HIGH : LOW);
dump(&results);
}
last = millis();
irrecv.resume(); // Receive the next value
}
}

View File

@@ -1,230 +0,0 @@
/*
* IRremote: IRremoteInfo - prints relevant config info & settings for IRremote over serial
* Intended to help identify & troubleshoot the various settings of IRremote
* For example, sometimes users are unsure of which pin is used for Tx or the RAWBUF values
* This example can be used to assist the user directly or with support.
* Intended to help identify & troubleshoot the various settings of IRremote
* Hopefully this utility will be a useful tool for support & troubleshooting for IRremote
* Check out the blog post describing the sketch via http://www.analysir.com/blog/2015/11/28/helper-utility-for-troubleshooting-irremote/
* Version 1.0 November 2015
* Original Author: AnalysIR - IR software & modules for Makers & Pros, visit http://www.AnalysIR.com
*/
#include <IRremote.h>
void setup()
{
Serial.begin(115200); //You may alter the BAUD rate here as needed
while (!Serial); //wait until Serial is established - required on some Platforms
//Runs only once per restart of the Arduino.
dumpHeader();
dumpRAWBUF();
dumpTIMER();
dumpTimerPin();
dumpClock();
dumpPlatform();
dumpPulseParams();
dumpSignalParams();
dumpArduinoIDE();
dumpDebugMode();
dumpProtocols();
dumpFooter();
}
void loop() {
//nothing to do!
}
void dumpRAWBUF() {
Serial.print(F("RAWBUF: "));
Serial.println(RAWBUF);
}
void dumpTIMER() {
boolean flag = false;
#ifdef IR_USE_TIMER1
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer1")); flag = true;
#endif
#ifdef IR_USE_TIMER2
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer2")); flag = true;
#endif
#ifdef IR_USE_TIMER3
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer3")); flag = true;
#endif
#ifdef IR_USE_TIMER4
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer4")); flag = true;
#endif
#ifdef IR_USE_TIMER5
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer5")); flag = true;
#endif
#ifdef IR_USE_TIMER4_HS
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer4_HS")); flag = true;
#endif
#ifdef IR_USE_TIMER_CMT
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer_CMT")); flag = true;
#endif
#ifdef IR_USE_TIMER_TPM1
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer_TPM1")); flag = true;
#endif
#ifdef IR_USE_TIMER_TINY0
Serial.print(F("Timer defined for use: ")); Serial.println(F("Timer_TINY0")); flag = true;
#endif
if (!flag) {
Serial.print(F("Timer Error: ")); Serial.println(F("not defined"));
}
}
void dumpTimerPin() {
Serial.print(F("IR Tx Pin: "));
Serial.println(TIMER_PWM_PIN);
}
void dumpClock() {
Serial.print(F("MCU Clock: "));
Serial.println(F_CPU);
}
void dumpPlatform() {
Serial.print(F("MCU Platform: "));
#if defined(__AVR_ATmega1280__)
Serial.println(F("Arduino Mega1280"));
#elif defined(__AVR_ATmega2560__)
Serial.println(F("Arduino Mega2560"));
#elif defined(__AVR_AT90USB162__)
Serial.println(F("Teensy 1.0 / AT90USB162"));
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
Serial.println(F("Arduino Leonardo / Yun / Teensy 1.0 / ATmega32U4"));
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
Serial.println(F("Teensy 3.0 / Teensy 3.1 / MK20DX128 / MK20DX256"));
#elif defined(__MKL26Z64__)
Serial.println(F("Teensy-LC / MKL26Z64"));
#elif defined(__AVR_AT90USB646__)
Serial.println(F("Teensy++ 1.0 / AT90USB646"));
#elif defined(__AVR_AT90USB1286__)
Serial.println(F("Teensy++ 2.0 / AT90USB1286"));
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
Serial.println(F("ATmega1284"));
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__)
Serial.println(F("ATmega644"));
#elif defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324A__) || defined(__AVR_ATmega324PA__)
Serial.println(F("ATmega324"));
#elif defined(__AVR_ATmega164A__) || defined(__AVR_ATmega164P__)
Serial.println(F("ATmega164"));
#elif defined(__AVR_ATmega128__)
Serial.println(F("ATmega128"));
#elif defined(__AVR_ATmega88__) || defined(__AVR_ATmega88P__)
Serial.println(F("ATmega88"));
#elif defined(__AVR_ATmega64__)
Serial.println(F("ATmega64"));
#elif defined(__AVR_ATmega48__) || defined(__AVR_ATmega48P__)
Serial.println(F("ATmega48"));
#elif defined(__AVR_ATmega32__)
Serial.println(F("ATmega32"));
#elif defined(__AVR_ATmega16__)
Serial.println(F("ATmega16"));
#elif defined(__AVR_ATmega8535__)
Serial.println(F("ATmega8535"));
#elif defined(__AVR_ATmega8__)
Serial.println(F("Atmega8"));
#elif defined(__AVR_ATtiny84__)
Serial.println(F("ATtiny84"));
#elif defined(__AVR_ATtiny85__)
Serial.println(F("ATtiny85"));
#else
Serial.println(F("ATmega328(P) / (Duemilanove, Diecimila, LilyPad, Mini, Micro, Fio, Nano, etc)"));
#endif
}
void dumpPulseParams() {
Serial.print(F("Mark Excess: ")); Serial.print(MARK_EXCESS);; Serial.println(F(" uSecs"));
Serial.print(F("Microseconds per tick: ")); Serial.print(USECPERTICK);; Serial.println(F(" uSecs"));
Serial.print(F("Measurement tolerance: ")); Serial.print(TOLERANCE); Serial.println(F("%"));
}
void dumpSignalParams() {
Serial.print(F("Minimum Gap between IR Signals: ")); Serial.print(_GAP); Serial.println(F(" uSecs"));
}
void dumpDebugMode() {
Serial.print(F("Debug Mode: "));
#if DEBUG
Serial.println(F("ON"));
#else
Serial.println(F("OFF (Normal)"));
#endif
}
void dumpArduinoIDE() {
Serial.print(F("Arduino IDE version: "));
Serial.print(ARDUINO / 10000);
Serial.write('.');
Serial.print((ARDUINO % 10000) / 100);
Serial.write('.');
Serial.println(ARDUINO % 100);
}
void dumpProtocols() {
Serial.println(); Serial.print(F("IR PROTOCOLS ")); Serial.print(F("SEND ")); Serial.println(F("DECODE"));
Serial.print(F("============= ")); Serial.print(F("======== ")); Serial.println(F("========"));
Serial.print(F("RC5: ")); printSendEnabled(SEND_RC5); printDecodeEnabled(DECODE_RC6);
Serial.print(F("RC6: ")); printSendEnabled(SEND_RC6); printDecodeEnabled(DECODE_RC5);
Serial.print(F("NEC: ")); printSendEnabled(SEND_NEC); printDecodeEnabled(DECODE_NEC);
Serial.print(F("SONY: ")); printSendEnabled(SEND_SONY); printDecodeEnabled(DECODE_SONY);
Serial.print(F("PANASONIC: ")); printSendEnabled(SEND_PANASONIC); printDecodeEnabled(DECODE_PANASONIC);
Serial.print(F("JVC: ")); printSendEnabled(SEND_JVC); printDecodeEnabled(DECODE_JVC);
Serial.print(F("SAMSUNG: ")); printSendEnabled(SEND_SAMSUNG); printDecodeEnabled(DECODE_SAMSUNG);
Serial.print(F("WHYNTER: ")); printSendEnabled(SEND_WHYNTER); printDecodeEnabled(DECODE_WHYNTER);
Serial.print(F("AIWA_RC_T501: ")); printSendEnabled(SEND_AIWA_RC_T501); printDecodeEnabled(DECODE_AIWA_RC_T501);
Serial.print(F("LG: ")); printSendEnabled(SEND_LG); printDecodeEnabled(DECODE_LG);
Serial.print(F("SANYO: ")); printSendEnabled(SEND_SANYO); printDecodeEnabled(DECODE_SANYO);
Serial.print(F("MITSUBISHI: ")); printSendEnabled(SEND_MITSUBISHI); printDecodeEnabled(DECODE_MITSUBISHI);
Serial.print(F("DISH: ")); printSendEnabled(SEND_DISH); printDecodeEnabled(DECODE_DISH);
Serial.print(F("SHARP: ")); printSendEnabled(SEND_SHARP); printDecodeEnabled(DECODE_SHARP);
Serial.print(F("DENON: ")); printSendEnabled(SEND_DENON); printDecodeEnabled(DECODE_DENON);
Serial.print(F("PRONTO: ")); printSendEnabled(SEND_PRONTO); Serial.println(F("(Not Applicable)"));
}
void printSendEnabled(int flag) {
if (flag) {
Serial.print(F("Enabled "));
}
else {
Serial.print(F("Disabled "));
}
}
void printDecodeEnabled(int flag) {
if (flag) {
Serial.println(F("Enabled"));
}
else {
Serial.println(F("Disabled"));
}
}
void dumpHeader() {
Serial.println(F("IRremoteInfo - by AnalysIR (http://www.AnalysIR.com/)"));
Serial.println(F(" - A helper sketch to assist in troubleshooting issues with the library by reviewing the settings within the IRremote library"));
Serial.println(F(" - Prints out the important settings within the library, which can be configured to suit the many supported platforms"));
Serial.println(F(" - When seeking on-line support, please post or upload the output of this sketch, where appropriate"));
Serial.println();
Serial.println(F("IRremote Library Settings"));
Serial.println(F("========================="));
}
void dumpFooter() {
Serial.println();
Serial.println(F("Notes: "));
Serial.println(F(" - Most of the seetings above can be configured in the following files included as part of the library"));
Serial.println(F(" - IRremteInt.h"));
Serial.println(F(" - IRremote.h"));
Serial.println(F(" - You can save SRAM by disabling the Decode or Send features for any protocol (Near the top of IRremoteInt.h)"));
Serial.println(F(" - Some Timer conflicts, with other libraries, can be easily resolved by configuring a differnt Timer for your platform"));
}

View File

@@ -1,24 +0,0 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
IRsend irsend;
void setup()
{
}
void loop() {
for (int i = 0; i < 3; i++) {
irsend.sendSony(0xa90, 12);
delay(40);
}
delay(5000); //5 second delay between each signal burst
}

View File

@@ -1,37 +0,0 @@
/*
* IRremote: IRsendRawDemo - demonstrates sending IR codes with sendRaw
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*
* IRsendRawDemo - added by AnalysIR (via www.AnalysIR.com), 24 August 2015
*
* This example shows how to send a RAW signal using the IRremote library.
* The example signal is actually a 32 bit NEC signal.
* Remote Control button: LGTV Power On/Off.
* Hex Value: 0x20DF10EF, 32 bits
*
* It is more efficient to use the sendNEC function to send NEC signals.
* Use of sendRaw here, serves only as an example of using the function.
*
*/
#include <IRremote.h>
IRsend irsend;
void setup()
{
}
void loop() {
int khz = 38; // 38kHz carrier frequency for the NEC protocol
unsigned int irSignal[] = {9000, 4500, 560, 560, 560, 560, 560, 1690, 560, 560, 560, 560, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 1690, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 560, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560, 39416, 9000, 2210, 560}; //AnalysIR Batch Export (IRremote) - RAW
irsend.sendRaw(irSignal, sizeof(irSignal) / sizeof(irSignal[0]), khz); //Note the approach used to automatically calculate the size of the array.
delay(5000); //In this example, the signal will be repeated every 5 seconds, approximately.
}

View File

@@ -1,190 +0,0 @@
/*
* IRremote: IRtest unittest
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST"
* You must then recompile the library by removing IRremote.o and restarting
* the arduino IDE.
*/
#include <IRremote.h>
#include <IRremoteInt.h>
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
IRrecv irrecv(0);
decode_results results;
class IRsendDummy :
public IRsend
{
public:
// For testing, just log the marks/spaces
#define SENDLOG_LEN 128
int sendlog[SENDLOG_LEN];
int sendlogcnt;
IRsendDummy() :
IRsend() {
}
void reset() {
sendlogcnt = 0;
}
void mark(int time) {
sendlog[sendlogcnt] = time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
void space(int time) {
sendlog[sendlogcnt] = -time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
// Copies the dummy buf into the interrupt buf
void useDummyBuf() {
int last = SPACE;
irparams.rcvstate = STATE_STOP;
irparams.rawlen = 1; // Skip the gap
for (int i = 0 ; i < sendlogcnt; i++) {
if (sendlog[i] < 0) {
if (last == MARK) {
// New space
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK;
last = SPACE;
}
else {
// More space
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK;
}
}
else if (sendlog[i] > 0) {
if (last == SPACE) {
// New mark
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK;
last = MARK;
}
else {
// More mark
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK;
}
}
}
if (irparams.rawlen % 2) {
irparams.rawlen--; // Remove trailing space
}
}
};
IRsendDummy irsenddummy;
void verify(unsigned long val, int bits, int type) {
irsenddummy.useDummyBuf();
irrecv.decode(&results);
Serial.print("Testing ");
Serial.print(val, HEX);
if (results.value == val && results.bits == bits && results.decode_type == type) {
Serial.println(": OK");
}
else {
Serial.println(": Error");
dump(&results);
}
}
void testNEC(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendNEC(val, bits);
verify(val, bits, NEC);
}
void testSony(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendSony(val, bits);
verify(val, bits, SONY);
}
void testRC5(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC5(val, bits);
verify(val, bits, RC5);
}
void testRC6(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC6(val, bits);
verify(val, bits, RC6);
}
void test() {
Serial.println("NEC tests");
testNEC(0x00000000, 32);
testNEC(0xffffffff, 32);
testNEC(0xaaaaaaaa, 32);
testNEC(0x55555555, 32);
testNEC(0x12345678, 32);
Serial.println("Sony tests");
testSony(0xfff, 12);
testSony(0x000, 12);
testSony(0xaaa, 12);
testSony(0x555, 12);
testSony(0x123, 12);
Serial.println("RC5 tests");
testRC5(0xfff, 12);
testRC5(0x000, 12);
testRC5(0xaaa, 12);
testRC5(0x555, 12);
testRC5(0x123, 12);
Serial.println("RC6 tests");
testRC6(0xfffff, 20);
testRC6(0x00000, 20);
testRC6(0xaaaaa, 20);
testRC6(0x55555, 20);
testRC6(0x12345, 20);
}
void setup()
{
Serial.begin(9600);
test();
}
void loop() {
}

View File

@@ -1,290 +0,0 @@
/*
* Test send/receive functions of IRremote, using a pair of Arduinos.
*
* Arduino #1 should have an IR LED connected to the send pin (3).
* Arduino #2 should have an IR detector/demodulator connected to the
* receive pin (11) and a visible LED connected to pin 3.
*
* The cycle:
* Arduino #1 will wait 2 seconds, then run through the tests.
* It repeats this forever.
* Arduino #2 will wait for at least one second of no signal
* (to synchronize with #1). It will then wait for the same test
* signals. It will log all the status to the serial port. It will
* also indicate status through the LED, which will flash each time a test
* is completed. If there is an error, it will light up for 5 seconds.
*
* The test passes if the LED flashes 19 times, pauses, and then repeats.
* The test fails if the LED lights for 5 seconds.
*
* The test software automatically decides which board is the sender and which is
* the receiver by looking for an input on the send pin, which will indicate
* the sender. You should hook the serial port to the receiver for debugging.
*
* Copyright 2010 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int LED_PIN = 3;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
#define RECEIVER 1
#define SENDER 2
#define ERROR 3
int mode;
void setup()
{
Serial.begin(9600);
// Check RECV_PIN to decide if we're RECEIVER or SENDER
if (digitalRead(RECV_PIN) == HIGH) {
mode = RECEIVER;
irrecv.enableIRIn();
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
Serial.println("Receiver mode");
}
else {
mode = SENDER;
Serial.println("Sender mode");
}
}
// Wait for the gap between tests, to synchronize with
// the sender.
// Specifically, wait for a signal followed by a gap of at last gap ms.
void waitForGap(unsigned long gap) {
Serial.println("Waiting for gap");
while (1) {
while (digitalRead(RECV_PIN) == LOW) {
}
unsigned long time = millis();
while (digitalRead(RECV_PIN) == HIGH) {
if (millis() - time > gap) {
return;
}
}
}
}
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
// Test send or receive.
// If mode is SENDER, send a code of the specified type, value, and bits
// If mode is RECEIVER, receive a code and verify that it is of the
// specified type, value, and bits. For success, the LED is flashed;
// for failure, the mode is set to ERROR.
// The motivation behind this method is that the sender and the receiver
// can do the same test calls, and the mode variable indicates whether
// to send or receive.
void test(const char *label, int type, unsigned long value, int bits) {
if (mode == SENDER) {
Serial.println(label);
if (type == NEC) {
irsend.sendNEC(value, bits);
}
else if (type == SONY) {
irsend.sendSony(value, bits);
}
else if (type == RC5) {
irsend.sendRC5(value, bits);
}
else if (type == RC6) {
irsend.sendRC6(value, bits);
}
else {
Serial.print(label);
Serial.println("Bad type!");
}
delay(200);
}
else if (mode == RECEIVER) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);
// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
if (type == results.decode_type && value == results.value && bits == results.bits) {
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
else {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
}
}
}
// Test raw send or receive. This is similar to the test method,
// except it send/receives raw data.
void testRaw(const char *label, unsigned int *rawbuf, int rawlen) {
if (mode == SENDER) {
Serial.println(label);
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */);
delay(200);
}
else if (mode == RECEIVER ) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);
// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
// Received length has extra first element for gap
if (rawlen != results.rawlen - 1) {
Serial.print("Bad raw length ");
Serial.println(results.rawlen, DEC);
mode = ERROR;
return;
}
for (int i = 0; i < rawlen; i++) {
long got = results.rawbuf[i+1] * USECPERTICK;
// Adjust for extra duration of marks
if (i % 2 == 0) {
got -= MARK_EXCESS;
}
else {
got += MARK_EXCESS;
}
// See if close enough, within 25%
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
return;
}
}
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
}
// This is the raw data corresponding to NEC 0x12345678
unsigned int sendbuf[] = { /* NEC format */
9000, 4500,
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */
560};
void loop() {
if (mode == SENDER) {
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
}
else if (mode == RECEIVER) {
waitForGap(1000);
}
else if (mode == ERROR) {
// Light up for 5 seconds for error
digitalWrite(LED_PIN, HIGH);
delay(5000);
digitalWrite(LED_PIN, LOW);
mode = RECEIVER; // Try again
return;
}
// The test suite.
test("SONY1", SONY, 0x123, 12);
test("SONY2", SONY, 0x000, 12);
test("SONY3", SONY, 0xfff, 12);
test("SONY4", SONY, 0x12345, 20);
test("SONY5", SONY, 0x00000, 20);
test("SONY6", SONY, 0xfffff, 20);
test("NEC1", NEC, 0x12345678, 32);
test("NEC2", NEC, 0x00000000, 32);
test("NEC3", NEC, 0xffffffff, 32);
test("NEC4", NEC, REPEAT, 32);
test("RC51", RC5, 0x12345678, 32);
test("RC52", RC5, 0x0, 32);
test("RC53", RC5, 0xffffffff, 32);
test("RC61", RC6, 0x12345678, 32);
test("RC62", RC6, 0x0, 32);
test("RC63", RC6, 0xffffffff, 32);
// Tests of raw sending and receiving.
// First test sending raw and receiving raw.
// Then test sending raw and receiving decoded NEC
// Then test sending NEC and receiving raw
testRaw("RAW1", sendbuf, 67);
if (mode == SENDER) {
testRaw("RAW2", sendbuf, 67);
test("RAW3", NEC, 0x12345678, 32);
}
else {
test("RAW2", NEC, 0x12345678, 32);
testRaw("RAW3", sendbuf, 67);
}
}

View File

@@ -1,29 +0,0 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include <IRremote.h>
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
#define PanasonicPower 0x100BCBD // Panasonic Power button
#define JVCPower 0xC5E8
IRsend irsend;
void setup()
{
}
void loop() {
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
delayMicroseconds(50);
}

View File

@@ -1,263 +0,0 @@
#include <IRremote.h>
#include <Wire.h>
IRsend irsend;
// not used
int RECV_PIN = 11;
IRrecv irrecv (RECV_PIN);
const int AC_TYPE = 0;
// 0 : TOWER
// 1 : WALL
//
int AC_HEAT = 0;
// 0 : cooling
// 1 : heating
int AC_POWER_ON = 0;
// 0 : off
// 1 : on
int AC_AIR_ACLEAN = 0;
// 0 : off
// 1 : on --> power on
int AC_TEMPERATURE = 27;
// temperature : 18 ~ 30
int AC_FLOW = 1;
// 0 : low
// 1 : mid
// 2 : high
// if AC_TYPE =1, 3 : change
//
const int AC_FLOW_TOWER[3] = {0, 4, 6};
const int AC_FLOW_WALL[4] = {0, 2, 4, 5};
unsigned long AC_CODE_TO_SEND;
int r = LOW;
int o_r = LOW;
byte a, b;
void ac_send_code(unsigned long code)
{
Serial.print("code to send : ");
Serial.print(code, BIN);
Serial.print(" : ");
Serial.println(code, HEX);
irsend.sendLG(code, 28);
}
void ac_activate(int temperature, int air_flow)
{
int AC_MSBITS1 = 8;
int AC_MSBITS2 = 8;
int AC_MSBITS3 = 0;
int AC_MSBITS4 ;
if ( AC_HEAT == 1 ) {
// heating
AC_MSBITS4 = 4;
} else {
// cooling
AC_MSBITS4 = 0;
}
int AC_MSBITS5 = temperature - 15;
int AC_MSBITS6 ;
if ( AC_TYPE == 0) {
AC_MSBITS6 = AC_FLOW_TOWER[air_flow];
} else {
AC_MSBITS6 = AC_FLOW_WALL[air_flow];
}
int AC_MSBITS7 = (AC_MSBITS3 + AC_MSBITS4 + AC_MSBITS5 + AC_MSBITS6) & B00001111;
AC_CODE_TO_SEND = AC_MSBITS1 << 4 ;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS2) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS3) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS4) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS5) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS6) << 4;
AC_CODE_TO_SEND = (AC_CODE_TO_SEND + AC_MSBITS7);
ac_send_code(AC_CODE_TO_SEND);
AC_POWER_ON = 1;
AC_TEMPERATURE = temperature;
AC_FLOW = air_flow;
}
void ac_change_air_swing(int air_swing)
{
if ( AC_TYPE == 0) {
if ( air_swing == 1) {
AC_CODE_TO_SEND = 0x881316B;
} else {
AC_CODE_TO_SEND = 0x881317C;
}
} else {
if ( air_swing == 1) {
AC_CODE_TO_SEND = 0x8813149;
} else {
AC_CODE_TO_SEND = 0x881315A;
}
}
ac_send_code(AC_CODE_TO_SEND);
}
void ac_power_down()
{
AC_CODE_TO_SEND = 0x88C0051;
ac_send_code(AC_CODE_TO_SEND);
AC_POWER_ON = 0;
}
void ac_air_clean(int air_clean)
{
if ( air_clean == 1) {
AC_CODE_TO_SEND = 0x88C000C;
} else {
AC_CODE_TO_SEND = 0x88C0084;
}
ac_send_code(AC_CODE_TO_SEND);
AC_AIR_ACLEAN = air_clean;
}
void setup()
{
Serial.begin(38400);
delay(1000);
Wire.begin(7);
Wire.onReceive(receiveEvent);
Serial.println(" - - - T E S T - - - ");
/* test
ac_activate(25, 1);
delay(5000);
ac_activate(27, 2);
delay(5000);
*/
}
void loop()
{
ac_activate(25, 1);
delay(5000);
ac_activate(27, 0);
delay(5000);
if ( r != o_r) {
/*
# a : mode or temp b : air_flow, temp, swing, clean, cooling/heating
# 18 ~ 30 : temp 0 ~ 2 : flow // on
# 0 : off 0
# 1 : on 0
# 2 : air_swing 0 or 1
# 3 : air_clean 0 or 1
# 4 : air_flow 0 ~ 2 : flow
# 5 : temp 18 ~ 30
# + : temp + 1
# - : temp - 1
# m : change cooling to air clean, air clean to cooling
*/
Serial.print("a : ");
Serial.print(a);
Serial.print(" b : ");
Serial.println(b);
switch (a) {
case 0: // off
ac_power_down();
break;
case 1: // on
ac_activate(AC_TEMPERATURE, AC_FLOW);
break;
case 2:
if ( b == 0 || b == 1 ) {
ac_change_air_swing(b);
}
break;
case 3: // 1 : clean on, power on
if ( b == 0 || b == 1 ) {
ac_air_clean(b);
}
break;
case 4:
if ( 0 <= b && b <= 2 ) {
ac_activate(AC_TEMPERATURE, b);
}
break;
case 5:
if (18 <= b && b <= 30 ) {
ac_activate(b, AC_FLOW);
}
break;
case '+':
if ( 18 <= AC_TEMPERATURE && AC_TEMPERATURE <= 29 ) {
ac_activate((AC_TEMPERATURE + 1), AC_FLOW);
}
break;
case '-':
if ( 19 <= AC_TEMPERATURE && AC_TEMPERATURE <= 30 ) {
ac_activate((AC_TEMPERATURE - 1), AC_FLOW);
}
break;
case 'm':
/*
if ac is on, 1) turn off, 2) turn on ac_air_clean(1)
if ac is off, 1) turn on, 2) turn off ac_air_clean(0)
*/
if ( AC_POWER_ON == 1 ) {
ac_power_down();
delay(100);
ac_air_clean(1);
} else {
if ( AC_AIR_ACLEAN == 1) {
ac_air_clean(0);
delay(100);
}
ac_activate(AC_TEMPERATURE, AC_FLOW);
}
break;
default:
if ( 18 <= a && a <= 30 ) {
if ( 0 <= b && b <= 2 ) {
ac_activate(a, b);
}
}
}
o_r = r ;
}
delay(100);
}
void receiveEvent(int howMany)
{
a = Wire.read();
b = Wire.read();
r = !r ;
}

View File

@@ -1,93 +0,0 @@
=== decoding for LG A/C ====
- 1) remote of LG AC has two type of HDR mark/space, 8000/4000 and 3100/10000
- 2) HDR 8000/4000 is decoded using decodeLG(IRrecvDumpV2) without problem
- 3) for HDR 3100/10000, use AnalysIR's code : http://www.analysir.com/blog/2014/03/19/air-conditioners-problems-recording-long-infrared-remote-control-signals-arduino/
- 4) for bin output based on AnalysIR's code : https://gist.github.com/chaeplin/a3a4b4b6b887c663bfe8
- 5) remove first two byte(11)
- 6) sample rawcode with bin output : https://gist.github.com/chaeplin/134d232e0b8cfb898860
=== *** ===
- 1) Sample raw code : https://gist.github.com/chaeplin/ab2a7ad1533c41260f0d
- 2) send raw code : https://gist.github.com/chaeplin/7c800d3166463bb51be4
=== *** ===
- (0) : Cooling or Heating
- (1) : fixed
- (2) : fixed
- (3) : special(power, swing, air clean)
- (4) : change air flow, temperature, cooling(0)/heating(4)
- (5) : temperature ( 15 + (5) = )
- (6) : air flow
- (7) : crc ( 3 + 4 + 5 + 6 ) & B00001111
°F = °C × 1.8 + 32
°C = (°F 32) / 1.8
=== *** ===
* remote / Korea / without heating
| status |(0)| (1)| (2)| (3)| (4)| (5)| (6)| (7)
|----------------|---|----|----|----|----|----|----|----
| on / 25 / mid | C |1000|1000|0000|0000|1010|0010|1100
| on / 26 / mid | C |1000|1000|0000|0000|1011|0010|1101
| on / 27 / mid | C |1000|1000|0000|0000|1100|0010|1110
| on / 28 / mid | C |1000|1000|0000|0000|1101|0010|1111
| on / 25 / high | C |1000|1000|0000|0000|1010|0100|1110
| on / 26 / high | C |1000|1000|0000|0000|1011|0100|1111
| on / 27 / high | C |1000|1000|0000|0000|1100|0100|0000
| on / 28 / high | C |1000|1000|0000|0000|1101|0100|0001
|----------------|---|----|----|----|----|----|----|----
| 1 up | C |1000|1000|0000|1000|1101|0100|1001
|----------------|---|----|----|----|----|----|----|----
| Cool power | C |1000|1000|0001|0000|0000|1100|1101
| energy saving | C |1000|1000|0001|0000|0000|0100|0101
| power | C |1000|1000|0001|0000|0000|1000|1001
| flow/up/down | C |1000|1000|0001|0011|0001|0100|1001
| up/down off | C |1000|1000|0001|0011|0001|0101|1010
| flow/left/right| C |1000|1000|0001|0011|0001|0110|1011
| left/right off | C |1000|1000|0001|0011|0001|0111|1100
|----------------|---|----|----|----|----|----|----|----
| Air clean | C |1000|1000|1100|0000|0000|0000|1100
|----------------|---|----|----|----|----|----|----|----
| off | C |1000|1000|1100|0000|0000|0101|0001
* remote / with heating
* converted using raw code at https://github.com/chaeplin/RaspAC/blob/master/lircd.conf
| status |(0)| (1)| (2)| (3)| (4)| (5)| (6)| (7)
|----------------|---|----|----|----|----|----|----|----
| on | C |1000|1000|0000|0000|1011|0010|1101
|----------------|---|----|----|----|----|----|----|----
| off | C |1000|1000|1100|0000|0000|0101|0001
|----------------|---|----|----|----|----|----|----|----
| 64 / 18 | C |1000|1000|0000|0000|0011|0100|0111
| 66 / 19 | C |1000|1000|0000|0000|0100|0100|1000
| 68 / 20 | C |1000|1000|0000|0000|0101|0100|1001
| 70 / 21 | C |1000|1000|0000|0000|0110|0100|1010
| 72 / 22 | C |1000|1000|0000|0000|0111|0100|1011
| 74 / 23 | C |1000|1000|0000|0000|1000|0100|1100
| 76 / 25 | C |1000|1000|0000|0000|1010|0100|1110
| 78 / 26 | C |1000|1000|0000|0000|1011|0100|1111
| 80 / 27 | C |1000|1000|0000|0000|1100|0100|0000
| 82 / 28 | C |1000|1000|0000|0000|1101|0100|0001
| 84 / 29 | C |1000|1000|0000|0000|1110|0100|0010
| 86 / 30 | C |1000|1000|0000|0000|1111|0100|0011
|----------------|---|----|----|----|----|----|----|----
| heat64 | H |1000|1000|0000|0100|0011|0100|1011
| heat66 | H |1000|1000|0000|0100|0100|0100|1100
| heat68 | H |1000|1000|0000|0100|0101|0100|1101
| heat70 | H |1000|1000|0000|0100|0110|0100|1110
| heat72 | H |1000|1000|0000|0100|0111|0100|1111
| heat74 | H |1000|1000|0000|0100|1000|0100|0000
| heat76 | H |1000|1000|0000|0100|1001|0100|0001
| heat78 | H |1000|1000|0000|0100|1011|0100|0011
| heat80 | H |1000|1000|0000|0100|1100|0100|0100
| heat82 | H |1000|1000|0000|0100|1101|0100|0101
| heat84 | H |1000|1000|0000|0100|1110|0100|0110
| heat86 | H |1000|1000|0000|0100|1111|0100|0111

View File

@@ -1,22 +0,0 @@
/*
* LegoPowerFunctionsSendDemo: LEGO Power Functions
* Copyright (c) 2016 Philipp Henkel
*/
#include <IRremote.h>
#include <IRremoteInt.h>
IRsend irsend;
void setup() {
}
void loop() {
// Send repeated command "channel 1, blue forward, red backward"
irsend.sendLegoPowerFunctions(0x197);
delay(2000);
// Send single command "channel 1, blue forward, red backward"
irsend.sendLegoPowerFunctions(0x197, false);
delay(2000);
}

View File

@@ -1,193 +0,0 @@
/*
* LegoPowerFunctionsTest: LEGO Power Functions Tests
* Copyright (c) 2016, 2017 Philipp Henkel
*/
#include <ir_Lego_PF_BitStreamEncoder.h>
void setup() {
Serial.begin(9600);
delay(1000); // wait for reset triggered by serial connection
runBitStreamEncoderTests();
}
void loop() {
}
void runBitStreamEncoderTests() {
Serial.println();
Serial.println("BitStreamEncoder Tests");
static LegoPfBitStreamEncoder bitStreamEncoder;
testStartBit(bitStreamEncoder);
testLowBit(bitStreamEncoder);
testHighBit(bitStreamEncoder);
testMessageBitCount(bitStreamEncoder);
testMessageBitCountRepeat(bitStreamEncoder);
testMessage407(bitStreamEncoder);
testMessage407Repeated(bitStreamEncoder);
testGetChannelId1(bitStreamEncoder);
testGetChannelId2(bitStreamEncoder);
testGetChannelId3(bitStreamEncoder);
testGetChannelId4(bitStreamEncoder);
testGetMessageLengthAllHigh(bitStreamEncoder);
testGetMessageLengthAllLow(bitStreamEncoder);
}
void logTestResult(bool testPassed) {
if (testPassed) {
Serial.println("OK");
}
else {
Serial.println("FAIL ############");
}
}
void testStartBit(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testStartBit ");
bitStreamEncoder.reset(0, false);
int startMark = bitStreamEncoder.getMarkDuration();
int startPause = bitStreamEncoder.getPauseDuration();
logTestResult(startMark == 158 && startPause == 1184-158);
}
void testLowBit(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testLowBit ");
bitStreamEncoder.reset(0, false);
bitStreamEncoder.next();
int lowMark = bitStreamEncoder.getMarkDuration();
int lowPause = bitStreamEncoder.getPauseDuration();
logTestResult(lowMark == 158 && lowPause == 421-158);
}
void testHighBit(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testHighBit ");
bitStreamEncoder.reset(0xFFFF, false);
bitStreamEncoder.next();
int highMark = bitStreamEncoder.getMarkDuration();
int highPause = bitStreamEncoder.getPauseDuration();
logTestResult(highMark == 158 && highPause == 711-158);
}
void testMessageBitCount(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testMessageBitCount ");
bitStreamEncoder.reset(0xFFFF, false);
int bitCount = 1;
while (bitStreamEncoder.next()) {
bitCount++;
}
logTestResult(bitCount == 18);
}
boolean check(LegoPfBitStreamEncoder& bitStreamEncoder, unsigned long markDuration, unsigned long pauseDuration) {
bool result = true;
result = result && bitStreamEncoder.getMarkDuration() == markDuration;
result = result && bitStreamEncoder.getPauseDuration() == pauseDuration;
return result;
}
boolean checkNext(LegoPfBitStreamEncoder& bitStreamEncoder, unsigned long markDuration, unsigned long pauseDuration) {
bool result = bitStreamEncoder.next();
result = result && check(bitStreamEncoder, markDuration, pauseDuration);
return result;
}
boolean checkDataBitsOfMessage407(LegoPfBitStreamEncoder& bitStreamEncoder) {
bool result = true;
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 263);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 553);
result = result && checkNext(bitStreamEncoder, 158, 553);
return result;
}
void testMessage407(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testMessage407 ");
bitStreamEncoder.reset(407, false);
bool result = true;
result = result && check(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && !bitStreamEncoder.next();
logTestResult(result);
}
void testMessage407Repeated(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testMessage407Repeated ");
bitStreamEncoder.reset(407, true);
bool result = true;
result = result && check(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 5L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 5L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 8L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026L + 8L * 16000L - 10844L);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && checkDataBitsOfMessage407(bitStreamEncoder);
result = result && checkNext(bitStreamEncoder, 158, 1026);
result = result && !bitStreamEncoder.next();
logTestResult(result);
}
void testMessageBitCountRepeat(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testMessageBitCountRepeat ");
bitStreamEncoder.reset(0xFFFF, true);
int bitCount = 1;
while (bitStreamEncoder.next()) {
bitCount++;
}
logTestResult(bitCount == 5*18);
}
void testGetChannelId1(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetChannelId1 ");
bitStreamEncoder.reset(407, false);
logTestResult(bitStreamEncoder.getChannelId() == 1);
}
void testGetChannelId2(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetChannelId2 ");
bitStreamEncoder.reset(4502, false);
logTestResult(bitStreamEncoder.getChannelId() == 2);
}
void testGetChannelId3(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetChannelId3 ");
bitStreamEncoder.reset(8597, false);
logTestResult(bitStreamEncoder.getChannelId() == 3);
}
void testGetChannelId4(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetChannelId4 ");
bitStreamEncoder.reset(12692, false);
logTestResult(bitStreamEncoder.getChannelId() == 4);
}
void testGetMessageLengthAllHigh(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetMessageLengthAllHigh ");
bitStreamEncoder.reset(0xFFFF, false);
logTestResult(bitStreamEncoder.getMessageLength() == 13744);
}
void testGetMessageLengthAllLow(LegoPfBitStreamEncoder& bitStreamEncoder) {
Serial.print(" testGetMessageLengthAllLow ");
bitStreamEncoder.reset(0x0, false);
logTestResult(bitStreamEncoder.getMessageLength() == 9104);
}

View File

@@ -1,513 +0,0 @@
#define TEST 0
#if TEST
# define SEND_PRONTO 1
# define PRONTO_ONCE false
# define PRONTO_REPEAT true
# define PRONTO_FALLBACK true
# define PRONTO_NOFALLBACK false
#endif
#if SEND_PRONTO
//******************************************************************************
#if TEST
# include <stdio.h>
void enableIROut (int freq) { printf("\nFreq = %d KHz\n", freq); }
void mark (int t) { printf("+%d," , t); }
void space (int t) { printf("-%d, ", t); }
#else
# include "IRremote.h"
#endif // TEST
//+=============================================================================
// Check for a valid hex digit
//
bool ishex (char ch)
{
return ( ((ch >= '0') && (ch <= '9')) ||
((ch >= 'A') && (ch <= 'F')) ||
((ch >= 'a') && (ch <= 'f')) ) ? true : false ;
}
//+=============================================================================
// Check for a valid "blank" ... '\0' is a valid "blank"
//
bool isblank (char ch)
{
return ((ch == ' ') || (ch == '\t') || (ch == '\0')) ? true : false ;
}
//+=============================================================================
// Bypass spaces
//
bool byp (char** pcp)
{
while (isblank(**pcp)) (*pcp)++ ;
}
//+=============================================================================
// Hex-to-Byte : Decode a hex digit
// We assume the character has already been validated
//
uint8_t htob (char ch)
{
if ((ch >= '0') && (ch <= '9')) return ch - '0' ;
if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ;
if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ;
}
//+=============================================================================
// Hex-to-Word : Decode a block of 4 hex digits
// We assume the string has already been validated
// and the pointer being passed points at the start of a block of 4 hex digits
//
uint16_t htow (char* cp)
{
return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) |
(htob(cp[2]) << 4) | (htob(cp[3]) ) ) ;
}
//+=============================================================================
//
bool sendPronto (char* s, bool repeat, bool fallback)
{
int i;
int len;
int skip;
char* cp;
uint16_t freq; // Frequency in KHz
uint8_t usec; // pronto uSec/tick
uint8_t once;
uint8_t rpt;
// Validate the string
for (cp = s; *cp; cp += 4) {
byp(&cp);
if ( !ishex(cp[0]) || !ishex(cp[1]) ||
!ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ;
}
// We will use cp to traverse the string
cp = s;
// Check mode = Oscillated/Learned
byp(&cp);
if (htow(cp) != 0000) return false;
cp += 4;
// Extract & set frequency
byp(&cp);
freq = (int)(1000000 / (htow(cp) * 0.241246)); // Rounding errors will occur, tolerance is +/- 10%
usec = (int)(((1.0 / freq) * 1000000) + 0.5); // Another rounding error, thank Cod for analogue electronics
freq /= 1000; // This will introduce a(nother) rounding error which we do not want in the usec calcualtion
cp += 4;
// Get length of "once" code
byp(&cp);
once = htow(cp);
cp += 4;
// Get length of "repeat" code
byp(&cp);
rpt = htow(cp);
cp += 4;
// Which code are we sending?
if (fallback) { // fallback on the "other" code if "this" code is not present
if (!repeat) { // requested 'once'
if (once) len = once * 2, skip = 0 ; // if once exists send it
else len = rpt * 2, skip = 0 ; // else send repeat code
} else { // requested 'repeat'
if (rpt) len = rpt * 2, skip = 0 ; // if rpt exists send it
else len = once * 2, skip = 0 ; // else send once code
}
} else { // Send what we asked for, do not fallback if the code is empty!
if (!repeat) len = once * 2, skip = 0 ; // 'once' starts at 0
else len = rpt * 2, skip = once ; // 'repeat' starts where 'once' ends
}
// Skip to start of code
for (i = 0; i < skip; i++, cp += 4) byp(&cp) ;
// Send code
enableIROut(freq);
for (i = 0; i < len; i++) {
byp(&cp);
if (i & 1) space(htow(cp) * usec);
else mark (htow(cp) * usec);
cp += 4;
}
}
//+=============================================================================
#if TEST
int main ( )
{
char prontoTest[] =
"0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70
"0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100
"0010 0030 0010 0aa6"; // 104
sendPronto(prontoTest, PRONTO_ONCE, PRONTO_FALLBACK); // once code
sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_FALLBACK); // repeat code
sendPronto(prontoTest, PRONTO_ONCE, PRONTO_NOFALLBACK); // once code
sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_NOFALLBACK); // repeat code
return 0;
}
#endif // TEST
#endif // SEND_PRONTO
#if 0
//******************************************************************************
// Sources:
// http://www.remotecentral.com/features/irdisp2.htm
// http://www.hifi-remote.com/wiki/index.php?title=Working_With_Pronto_Hex
//******************************************************************************
#include <stdint.h>
#include <stdio.h>
#define IRPRONTO
#include "IRremoteInt.h" // The Arduino IRremote library defines USECPERTICK
//------------------------------------------------------------------------------
// Source: https://www.google.co.uk/search?q=DENON+MASTER+IR+Hex+Command+Sheet
// -> http://assets.denon.com/documentmaster/us/denon%20master%20ir%20hex.xls
//
char prontoTest[] =
"0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70
"0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100
"0010 0030 0010 0aa6"; // 104
//------------------------------------------------------------------------------
// This is the longest code we can support
#define CODEMAX 200
//------------------------------------------------------------------------------
// This is the data we pull out of the pronto code
typedef
struct {
int freq; // Carrier frequency (in Hz)
int usec; // uSec per tick (based on freq)
int codeLen; // Length of code
uint16_t code[CODEMAX]; // Code in hex
int onceLen; // Length of "once" transmit
uint16_t* once; // Pointer to start within 'code'
int rptLen; // Length of "repeat" transmit
uint16_t* rpt; // Pointer to start within 'code'
}
pronto_t;
//------------------------------------------------------------------------------
// From what I have seen, the only time we go over 8-bits is the 'space'
// on the end which creates the lead-out/inter-code gap. Assuming I'm right,
// we can code this up as a special case and otherwise halve the size of our
// data!
// Ignoring the first four values (the config data) and the last value
// (the lead-out), if you find a protocol that uses values greater than 00fe
// we are going to have to revisit this code!
//
//
// So, the 0th byte will be the carrier frequency in Khz (NOT Hz)
// " 1st " " " " length of the "once" code
// " 2nd " " " " length of the "repeat" code
//
// Thereafter, odd bytes will be Mark lengths as a multiple of USECPERTICK uS
// even " " " Space " " " " " " "
//
// Any occurence of "FF" in either a Mark or a Space will indicate
// "Use the 16-bit FF value" which will also be a multiple of USECPERTICK uS
//
//
// As a point of comparison, the test code (prontoTest[]) is 520 bytes
// (yes, more than 0.5KB of our Arduino's precious 32KB) ... after conversion
// to pronto hex that goes down to ((520/5)*2) = 208 bytes ... once converted to
// our format we are down to ((208/2) -1 -1 +2) = 104 bytes
//
// In fariness this is still very memory-hungry
// ...As a rough guide:
// 10 codes cost 1K of memory (this will vary depending on the protocol).
//
// So if you're building a complex remote control, you will probably need to
// keep the codes on an external memory device (not in the Arduino sketch) and
// load them as you need them. Hmmm.
//
// This dictates that "Oscillated Pronto Codes" are probably NOT the way forward
//
// For example, prontoTest[] happens to be: A 48-bit IR code in Denon format
// So we know it starts with 80/40 (Denon header)
// and ends with 10/aa6 (Denon leadout)
// and all (48) bits in between are either 10/10 (Denon 0)
// or 10/30 (Denon 1)
// So we could easily store this data in 1-byte ("Denon")
// + 1-byte (Length=48)
// + 6-bytes (IR code)
// At 8-bytes per code, we can store 128 codes in 1KB or memory - that's a lot
// better than the 2 (two) we started off with!
//
// And serendipitously, by reducing the amount of data, our program will run
// a LOT faster!
//
// Again, I repeat, even after you have spent time converting the "Oscillated
// Pronto Codes" in to IRremote format, it will be a LOT more memory-hungry
// than using sendDenon() (or whichever) ...BUT these codes are easily
// available on the internet, so we'll support them!
//
typedef
struct {
uint16_t FF;
uint8_t code[CODEMAX];
}
irCode_t;
//------------------------------------------------------------------------------
#define DEBUGF(...) printf(__VA_ARGS__)
//+=============================================================================
// String must be block of 4 hex digits separated with blanks
//
bool validate (char* cp, int* len)
{
for (*len = 0; *cp; (*len)++, cp += 4) {
byp(&cp);
if ( !ishex(cp[0]) || !ishex(cp[1]) ||
!ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ;
}
return true;
}
//+=============================================================================
// Hex-to-Byte : Decode a hex digit
// We assume the character has already been validated
//
uint8_t htob (char ch)
{
if ((ch >= '0') && (ch <= '9')) return ch - '0' ;
if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ;
if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ;
}
//+=============================================================================
// Hex-to-Word : Decode a block of 4 hex digits
// We assume the string has already been validated
// and the pointer being passed points at the start of a block of 4 hex digits
//
uint16_t htow (char* cp)
{
return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) |
(htob(cp[2]) << 4) | (htob(cp[3]) ) ) ;
}
//+=============================================================================
// Convert the pronto string in to data
//
bool decode (char* s, pronto_t* p, irCode_t* ir)
{
int i, len;
char* cp;
// Validate the Pronto string
if (!validate(s, &p->codeLen)) {
DEBUGF("Invalid pronto string\n");
return false ;
}
DEBUGF("Found %d hex codes\n", p->codeLen);
// Allocate memory to store the decoded string
//if (!(p->code = malloc(p->len))) {
// DEBUGF("Memory allocation failed\n");
// return false ;
//}
// Check in case our code is too long
if (p->codeLen > CODEMAX) {
DEBUGF("Code too long, edit CODEMAX and recompile\n");
return false ;
}
// Decode the string
cp = s;
for (i = 0; i < p->codeLen; i++, cp += 4) {
byp(&cp);
p->code[i] = htow(cp);
}
// Announce our findings
DEBUGF("Input: |%s|\n", s);
DEBUGF("Found: |");
for (i = 0; i < p->codeLen; i++) DEBUGF("%04x ", p->code[i]) ;
DEBUGF("|\n");
DEBUGF("Form [%04X] : ", p->code[0]);
if (p->code[0] == 0x0000) DEBUGF("Oscillated (Learned)\n");
else if (p->code[0] == 0x0100) DEBUGF("Unmodulated\n");
else DEBUGF("Unknown\n");
if (p->code[0] != 0x0000) return false ; // Can only handle Oscillated
// Calculate the carrier frequency (+/- 10%) & uSecs per pulse
// Pronto uses a crystal which generates a timeabse of 0.241246
p->freq = (int)(1000000 / (p->code[1] * 0.241246));
p->usec = (int)(((1.0 / p->freq) * 1000000) + 0.5);
ir->code[0] = p->freq / 1000;
DEBUGF("Freq [%04X] : %d Hz (%d uS/pluse) -> %d KHz\n",
p->code[1], p->freq, p->usec, ir->code[0]);
// Set the length & start pointer for the "once" code
p->onceLen = p->code[2];
p->once = &p->code[4];
ir->code[1] = p->onceLen;
DEBUGF("Once [%04X] : %d\n", p->code[2], p->onceLen);
// Set the length & start pointer for the "repeat" code
p->rptLen = p->code[3];
p->rpt = &p->code[4 + p->onceLen];
ir->code[2] = p->rptLen;
DEBUGF("Rpt [%04X] : %d\n", p->code[3], p->rptLen);
// Check everything tallies
if (1 + 1 + 1 + 1 + (p->onceLen * 2) + (p->rptLen * 2) != p->codeLen) {
DEBUGF("Bad code length\n");
return false;
}
// Convert the IR data to our new format
ir->FF = p->code[p->codeLen - 1];
len = (p->onceLen * 2) + (p->rptLen * 2);
DEBUGF("Encoded: |");
for (i = 0; i < len; i++) {
if (p->code[i+4] == ir->FF) {
ir->code[i+3] = 0xFF;
} else if (p->code[i+4] > 0xFE) {
DEBUGF("\n%04X : Mark/Space overflow\n", p->code[i+4]);
return false;
} else {
ir->code[i+3] = (p->code[i+4] * p->usec) / USECPERTICK;
}
DEBUGF("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]);
}
DEBUGF("|\n");
ir->FF = (ir->FF * p->usec) / USECPERTICK;
DEBUGF("FF -> %d\n", ir->FF);
return true;
}
//+=============================================================================
//
void irDump (irCode_t* ir)
{
int i, len;
printf("uint8_t buttonName[%d] = {", len);
printf("%d,%d, ", (ir->FF >> 8), ir->FF & 0xFF);
printf("%d,%d,%d, ", ir->code[0], ir->code[1], ir->code[2]);
len = (ir->code[1] * 2) + (ir->code[2] * 2);
for (i = 0; i < len; i++) {
printf("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]);
}
printf("};\n");
}
//+=============================================================================
//
int main ( )
{
pronto_t pCode;
irCode_t irCode;
decode(prontoTest, &pCode, &irCode);
irDump(&irCode);
return 0;
}
#endif //0

View File

@@ -1,235 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
#ifdef IR_TIMER_USE_ESP32
hw_timer_t *timer;
void IRTimer(); // defined in IRremote.cpp
#endif
//+=============================================================================
// Decodes the received IR message
// Returns 0 if no data ready, 1 if data ready.
// Results of decoding are stored in results
//
int IRrecv::decode (decode_results *results)
{
results->rawbuf = irparams.rawbuf;
results->rawlen = irparams.rawlen;
results->overflow = irparams.overflow;
if (irparams.rcvstate != STATE_STOP) return false ;
#if DECODE_NEC
DBG_PRINTLN("Attempting NEC decode");
if (decodeNEC(results)) return true ;
#endif
#if DECODE_SONY
DBG_PRINTLN("Attempting Sony decode");
if (decodeSony(results)) return true ;
#endif
#if DECODE_SANYO
DBG_PRINTLN("Attempting Sanyo decode");
if (decodeSanyo(results)) return true ;
#endif
#if DECODE_MITSUBISHI
DBG_PRINTLN("Attempting Mitsubishi decode");
if (decodeMitsubishi(results)) return true ;
#endif
#if DECODE_RC5
DBG_PRINTLN("Attempting RC5 decode");
if (decodeRC5(results)) return true ;
#endif
#if DECODE_RC6
DBG_PRINTLN("Attempting RC6 decode");
if (decodeRC6(results)) return true ;
#endif
#if DECODE_PANASONIC
DBG_PRINTLN("Attempting Panasonic decode");
if (decodePanasonic(results)) return true ;
#endif
#if DECODE_LG
DBG_PRINTLN("Attempting LG decode");
if (decodeLG(results)) return true ;
#endif
#if DECODE_JVC
DBG_PRINTLN("Attempting JVC decode");
if (decodeJVC(results)) return true ;
#endif
#if DECODE_SAMSUNG
DBG_PRINTLN("Attempting SAMSUNG decode");
if (decodeSAMSUNG(results)) return true ;
#endif
#if DECODE_WHYNTER
DBG_PRINTLN("Attempting Whynter decode");
if (decodeWhynter(results)) return true ;
#endif
#if DECODE_AIWA_RC_T501
DBG_PRINTLN("Attempting Aiwa RC-T501 decode");
if (decodeAiwaRCT501(results)) return true ;
#endif
#if DECODE_DENON
DBG_PRINTLN("Attempting Denon decode");
if (decodeDenon(results)) return true ;
#endif
#if DECODE_LEGO_PF
DBG_PRINTLN("Attempting Lego Power Functions");
if (decodeLegoPowerFunctions(results)) return true ;
#endif
// decodeHash returns a hash on any input.
// Thus, it needs to be last in the list.
// If you add any decodes, add them before this.
if (decodeHash(results)) return true ;
// Throw away and start over
resume();
return false;
}
//+=============================================================================
IRrecv::IRrecv (int recvpin)
{
irparams.recvpin = recvpin;
irparams.blinkflag = 0;
}
IRrecv::IRrecv (int recvpin, int blinkpin)
{
irparams.recvpin = recvpin;
irparams.blinkpin = blinkpin;
pinMode(blinkpin, OUTPUT);
irparams.blinkflag = 0;
}
//+=============================================================================
// initialization
//
void IRrecv::enableIRIn ( )
{
// Interrupt Service Routine - Fires every 50uS
#ifdef ESP32
// ESP32 has a proper API to setup timers, no weird chip macros needed
// simply call the readable API versions :)
// 3 timers, choose #1, 80 divider nanosecond precision, 1 to count up
timer = timerBegin(1, 80, 1);
timerAttachInterrupt(timer, &IRTimer, 1);
// every 50ns, autoreload = true
timerAlarmWrite(timer, 50, true);
timerAlarmEnable(timer);
#else
cli();
// Setup pulse clock timer interrupt
// Prescale /8 (16M/8 = 0.5 microseconds per tick)
// Therefore, the timer interval can range from 0.5 to 128 microseconds
// Depending on the reset value (255 to 0)
TIMER_CONFIG_NORMAL();
// Timer2 Overflow Interrupt Enable
TIMER_ENABLE_INTR;
TIMER_RESET;
sei(); // enable interrupts
#endif
// Initialize state machine variables
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
// Set pin modes
pinMode(irparams.recvpin, INPUT);
}
//+=============================================================================
// Enable/disable blinking of pin 13 on IR processing
//
void IRrecv::blink13 (int blinkflag)
{
irparams.blinkflag = blinkflag;
if (blinkflag) pinMode(BLINKLED, OUTPUT) ;
}
//+=============================================================================
// Return if receiving new IR signals
//
bool IRrecv::isIdle ( )
{
return (irparams.rcvstate == STATE_IDLE || irparams.rcvstate == STATE_STOP) ? true : false;
}
//+=============================================================================
// Restart the ISR state machine
//
void IRrecv::resume ( )
{
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
}
//+=============================================================================
// hashdecode - decode an arbitrary IR code.
// Instead of decoding using a standard encoding scheme
// (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value.
//
// The algorithm: look at the sequence of MARK signals, and see if each one
// is shorter (0), the same length (1), or longer (2) than the previous.
// Do the same with the SPACE signals. Hash the resulting sequence of 0's,
// 1's, and 2's to a 32-bit value. This will give a unique value for each
// different code (probably), for most code systems.
//
// http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html
//
// Compare two tick values, returning 0 if newval is shorter,
// 1 if newval is equal, and 2 if newval is longer
// Use a tolerance of 20%
//
int IRrecv::compare (unsigned int oldval, unsigned int newval)
{
if (newval < oldval * .8) return 0 ;
else if (oldval < newval * .8) return 2 ;
else return 1 ;
}
//+=============================================================================
// Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param
// Converts the raw code values into a 32-bit hash code.
// Hopefully this code is unique for each button.
// This isn't a "real" decoding, just an arbitrary value.
//
#define FNV_PRIME_32 16777619
#define FNV_BASIS_32 2166136261
long IRrecv::decodeHash (decode_results *results)
{
long hash = FNV_BASIS_32;
// Require at least 6 samples to prevent triggering on noise
if (results->rawlen < 6) return false ;
for (int i = 1; (i + 2) < results->rawlen; i++) {
int value = compare(results->rawbuf[i], results->rawbuf[i+2]);
// Add value into the hash
hash = (hash * FNV_PRIME_32) ^ value;
}
results->value = hash;
results->bits = 32;
results->decode_type = UNKNOWN;
return true;
}

View File

@@ -1,90 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//+=============================================================================
void IRsend::sendRaw (const unsigned int buf[], unsigned int len, unsigned int hz)
{
// Set IR carrier frequency
enableIROut(hz);
for (unsigned int i = 0; i < len; i++) {
if (i & 1) space(buf[i]) ;
else mark (buf[i]) ;
}
space(0); // Always end with the LED off
}
//+=============================================================================
// Sends an IR mark for the specified number of microseconds.
// The mark output is modulated at the PWM frequency.
//
void IRsend::mark (unsigned int time)
{
TIMER_ENABLE_PWM; // Enable pin 3 PWM output
if (time > 0) custom_delay_usec(time);
}
//+=============================================================================
// Leave pin off for time (given in microseconds)
// Sends an IR space for the specified number of microseconds.
// A space is no output, so the PWM output is disabled.
//
void IRsend::space (unsigned int time)
{
TIMER_DISABLE_PWM; // Disable pin 3 PWM output
if (time > 0) IRsend::custom_delay_usec(time);
}
//+=============================================================================
// Enables IR output. The khz value controls the modulation frequency in kilohertz.
// The IR output will be on pin 3 (OC2B).
// This routine is designed for 36-40KHz; if you use it for other values, it's up to you
// to make sure it gives reasonable results. (Watch out for overflow / underflow / rounding.)
// TIMER2 is used in phase-correct PWM mode, with OCR2A controlling the frequency and OCR2B
// controlling the duty cycle.
// There is no prescaling, so the output frequency is 16MHz / (2 * OCR2A)
// To turn the output on and off, we leave the PWM running, but connect and disconnect the output pin.
// A few hours staring at the ATmega documentation and this will all make sense.
// See my Secrets of Arduino PWM at http://arcfn.com/2009/07/secrets-of-arduino-pwm.html for details.
//
void IRsend::enableIROut (int khz)
{
// FIXME: implement ESP32 support, see IR_TIMER_USE_ESP32 in boarddefs.h
#ifndef ESP32
// Disable the Timer2 Interrupt (which is used for receiving IR)
TIMER_DISABLE_INTR; //Timer2 Overflow Interrupt
pinMode(TIMER_PWM_PIN, OUTPUT);
digitalWrite(TIMER_PWM_PIN, LOW); // When not sending PWM, we want it low
// COM2A = 00: disconnect OC2A
// COM2B = 00: disconnect OC2B; to send signal set to 10: OC2B non-inverted
// WGM2 = 101: phase-correct PWM with OCRA as top
// CS2 = 000: no prescaling
// The top value for the timer. The modulation frequency will be SYSCLOCK / 2 / OCR2A.
TIMER_CONFIG_KHZ(khz);
#endif
}
//+=============================================================================
// Custom delay function that circumvents Arduino's delayMicroseconds limit
void IRsend::custom_delay_usec(unsigned long uSecs) {
if (uSecs > 4) {
unsigned long start = micros();
unsigned long endMicros = start + uSecs - 4;
if (endMicros < start) { // Check if overflow
while ( micros() > start ) {} // wait until overflow
}
while ( micros() < endMicros ) {} // normal wait
}
//else {
// __asm__("nop\n\t"); // must have or compiler optimizes out
//}
}

View File

@@ -1,105 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// AAA IIIII W W AAA
// A A I W W A A
// AAAAA I W W W AAAAA
// A A I W W W A A
// A A IIIII WWW A A
//==============================================================================
// Based off the RC-T501 RCU
// Lirc file http://lirc.sourceforge.net/remotes/aiwa/RC-T501
#define AIWA_RC_T501_HZ 38
#define AIWA_RC_T501_BITS 15
#define AIWA_RC_T501_PRE_BITS 26
#define AIWA_RC_T501_POST_BITS 1
#define AIWA_RC_T501_SUM_BITS (AIWA_RC_T501_PRE_BITS + AIWA_RC_T501_BITS + AIWA_RC_T501_POST_BITS)
#define AIWA_RC_T501_HDR_MARK 8800
#define AIWA_RC_T501_HDR_SPACE 4500
#define AIWA_RC_T501_BIT_MARK 500
#define AIWA_RC_T501_ONE_SPACE 600
#define AIWA_RC_T501_ZERO_SPACE 1700
//+=============================================================================
#if SEND_AIWA_RC_T501
void IRsend::sendAiwaRCT501 (int code)
{
unsigned long pre = 0x0227EEC0; // 26-bits
// Set IR carrier frequency
enableIROut(AIWA_RC_T501_HZ);
// Header
mark(AIWA_RC_T501_HDR_MARK);
space(AIWA_RC_T501_HDR_SPACE);
// Send "pre" data
for (unsigned long mask = 1UL << (26 - 1); mask; mask >>= 1) {
mark(AIWA_RC_T501_BIT_MARK);
if (pre & mask) space(AIWA_RC_T501_ONE_SPACE) ;
else space(AIWA_RC_T501_ZERO_SPACE) ;
}
//-v- THIS CODE LOOKS LIKE IT MIGHT BE WRONG - CHECK!
// it only send 15bits and ignores the top bit
// then uses TOPBIT which is 0x80000000 to check the bit code
// I suspect TOPBIT should be changed to 0x00008000
// Skip first code bit
code <<= 1;
// Send code
for (int i = 0; i < 15; i++) {
mark(AIWA_RC_T501_BIT_MARK);
if (code & 0x80000000) space(AIWA_RC_T501_ONE_SPACE) ;
else space(AIWA_RC_T501_ZERO_SPACE) ;
code <<= 1;
}
//-^- THIS CODE LOOKS LIKE IT MIGHT BE WRONG - CHECK!
// POST-DATA, 1 bit, 0x0
mark(AIWA_RC_T501_BIT_MARK);
space(AIWA_RC_T501_ZERO_SPACE);
mark(AIWA_RC_T501_BIT_MARK);
space(0);
}
#endif
//+=============================================================================
#if DECODE_AIWA_RC_T501
bool IRrecv::decodeAiwaRCT501 (decode_results *results)
{
int data = 0;
int offset = 1;
// Check SIZE
if (irparams.rawlen < 2 * (AIWA_RC_T501_SUM_BITS) + 4) return false ;
// Check HDR Mark/Space
if (!MATCH_MARK (results->rawbuf[offset++], AIWA_RC_T501_HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], AIWA_RC_T501_HDR_SPACE)) return false ;
offset += 26; // skip pre-data - optional
while(offset < irparams.rawlen - 4) {
if (MATCH_MARK(results->rawbuf[offset], AIWA_RC_T501_BIT_MARK)) offset++ ;
else return false ;
// ONE & ZERO
if (MATCH_SPACE(results->rawbuf[offset], AIWA_RC_T501_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], AIWA_RC_T501_ZERO_SPACE)) data = (data << 1) | 0 ;
else break ; // End of one & zero detected
offset++;
}
results->bits = (offset - 1) / 2;
if (results->bits < 42) return false ;
results->value = data;
results->decode_type = AIWA_RC_T501;
return true;
}
#endif

View File

@@ -1,94 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
// Reverse Engineered by looking at RAW dumps generated by IRremote
// I have since discovered that Denon publish all their IR codes:
// https://www.google.co.uk/search?q=DENON+MASTER+IR+Hex+Command+Sheet
// -> http://assets.denon.com/documentmaster/us/denon%20master%20ir%20hex.xls
// Having looked at the official Denon Pronto sheet and reverse engineered
// the timing values from it, it is obvious that Denon have a range of
// different timings and protocols ...the values here work for my AVR-3801 Amp!
//==============================================================================
// DDDD EEEEE N N OOO N N
// D D E NN N O O NN N
// D D EEE N N N O O N N N
// D D E N NN O O N NN
// DDDD EEEEE N N OOO N N
//==============================================================================
#define BITS 14 // The number of bits in the command
#define HDR_MARK 300 // The length of the Header:Mark
#define HDR_SPACE 750 // The lenght of the Header:Space
#define BIT_MARK 300 // The length of a Bit:Mark
#define ONE_SPACE 1800 // The length of a Bit:Space for 1's
#define ZERO_SPACE 750 // The length of a Bit:Space for 0's
//+=============================================================================
//
#if SEND_DENON
void IRsend::sendDenon (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark (HDR_MARK);
space(HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark (BIT_MARK);
space(ONE_SPACE);
} else {
mark (BIT_MARK);
space(ZERO_SPACE);
}
}
// Footer
mark(BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
//
#if DECODE_DENON
bool IRrecv::decodeDenon (decode_results *results)
{
unsigned long data = 0; // Somewhere to build our code
int offset = 1; // Skip the Gap reading
// Check we have the right amount of data
if (irparams.rawlen != 1 + 2 + (2 * BITS) + 1) return false ;
// Check initial Mark+Space match
if (!MATCH_MARK (results->rawbuf[offset++], HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], HDR_SPACE)) return false ;
// Read the bits in
for (int i = 0; i < BITS; i++) {
// Each bit looks like: MARK + SPACE_1 -> 1
// or : MARK + SPACE_0 -> 0
if (!MATCH_MARK(results->rawbuf[offset++], BIT_MARK)) return false ;
// IR data is big-endian, so we shuffle it in from the right:
if (MATCH_SPACE(results->rawbuf[offset], ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = BITS;
results->value = data;
results->decode_type = DENON;
return true;
}
#endif

View File

@@ -1,54 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// DDDD IIIII SSSS H H
// D D I S H H
// D D I SSS HHHHH
// D D I S H H
// DDDD IIIII SSSS H H
//==============================================================================
// Sharp and DISH support by Todd Treece ( http://unionbridge.org/design/ircommand )
//
// The sned function needs to be repeated 4 times
//
// Only send the last for characters of the hex.
// I.E. Use 0x1C10 instead of 0x0000000000001C10 as listed in the LIRC file.
//
// Here is the LIRC file I found that seems to match the remote codes from the
// oscilloscope:
// DISH NETWORK (echostar 301):
// http://lirc.sourceforge.net/remotes/echostar/301_501_3100_5100_58xx_59xx
#define DISH_BITS 16
#define DISH_HDR_MARK 400
#define DISH_HDR_SPACE 6100
#define DISH_BIT_MARK 400
#define DISH_ONE_SPACE 1700
#define DISH_ZERO_SPACE 2800
#define DISH_RPT_SPACE 6200
//+=============================================================================
#if SEND_DISH
void IRsend::sendDISH (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(56);
mark(DISH_HDR_MARK);
space(DISH_HDR_SPACE);
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(DISH_BIT_MARK);
space(DISH_ONE_SPACE);
} else {
mark(DISH_BIT_MARK);
space(DISH_ZERO_SPACE);
}
}
mark(DISH_HDR_MARK); //added 26th March 2016, by AnalysIR ( https://www.AnalysIR.com )
}
#endif

View File

@@ -1,101 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// JJJJJ V V CCCC
// J V V C
// J V V C
// J J V V C
// J V CCCC
//==============================================================================
#define JVC_BITS 16
#define JVC_HDR_MARK 8000
#define JVC_HDR_SPACE 4000
#define JVC_BIT_MARK 600
#define JVC_ONE_SPACE 1600
#define JVC_ZERO_SPACE 550
#define JVC_RPT_LENGTH 60000
//+=============================================================================
// JVC does NOT repeat by sending a separate code (like NEC does).
// The JVC protocol repeats by skipping the header.
// To send a JVC repeat signal, send the original code value
// and set 'repeat' to true
//
#if SEND_JVC
void IRsend::sendJVC (unsigned long data, int nbits, bool repeat)
{
// Set IR carrier frequency
enableIROut(38);
// Only send the Header if this is NOT a repeat command
if (!repeat){
mark(JVC_HDR_MARK);
space(JVC_HDR_SPACE);
}
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(JVC_BIT_MARK);
space(JVC_ONE_SPACE);
} else {
mark(JVC_BIT_MARK);
space(JVC_ZERO_SPACE);
}
}
// Footer
mark(JVC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_JVC
bool IRrecv::decodeJVC (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Check for repeat
if ( (irparams.rawlen - 1 == 33)
&& MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)
&& MATCH_MARK(results->rawbuf[irparams.rawlen-1], JVC_BIT_MARK)
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = JVC;
return true;
}
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], JVC_HDR_MARK)) return false ;
if (irparams.rawlen < (2 * JVC_BITS) + 1 ) return false ;
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset++], JVC_HDR_SPACE)) return false ;
for (int i = 0; i < JVC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], JVC_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], JVC_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], JVC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Stop bit
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)) return false ;
// Success
results->bits = JVC_BITS;
results->value = data;
results->decode_type = JVC;
return true;
}
#endif

View File

@@ -1,80 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// L GGGG
// L G
// L G GG
// L G G
// LLLLL GGG
//==============================================================================
#define LG_BITS 28
#define LG_HDR_MARK 8000
#define LG_HDR_SPACE 4000
#define LG_BIT_MARK 600
#define LG_ONE_SPACE 1600
#define LG_ZERO_SPACE 550
#define LG_RPT_LENGTH 60000
//+=============================================================================
#if DECODE_LG
bool IRrecv::decodeLG (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Check we have the right amount of data
if (irparams.rawlen < (2 * LG_BITS) + 1 ) return false ;
// Initial mark/space
if (!MATCH_MARK(results->rawbuf[offset++], LG_HDR_MARK)) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], LG_HDR_SPACE)) return false ;
for (int i = 0; i < LG_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], LG_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], LG_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], LG_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Stop bit
if (!MATCH_MARK(results->rawbuf[offset], LG_BIT_MARK)) return false ;
// Success
results->bits = LG_BITS;
results->value = data;
results->decode_type = LG;
return true;
}
#endif
//+=============================================================================
#if SEND_LG
void IRsend::sendLG (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(LG_HDR_MARK);
space(LG_HDR_SPACE);
mark(LG_BIT_MARK);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
space(LG_ONE_SPACE);
mark(LG_BIT_MARK);
} else {
space(LG_ZERO_SPACE);
mark(LG_BIT_MARK);
}
}
space(0); // Always end with the LED off
}
#endif

View File

@@ -1,46 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
#include "ir_Lego_PF_BitStreamEncoder.h"
//==============================================================================
// L EEEEEE EEEE OOOO
// L E E O O
// L EEEE E EEE O O
// L E E E O O LEGO Power Functions
// LLLLLL EEEEEE EEEE OOOO Copyright (c) 2016 Philipp Henkel
//==============================================================================
// Supported Devices
// LEGO® Power Functions IR Receiver 8884
//+=============================================================================
//
#if SEND_LEGO_PF
#if DEBUG
namespace {
void logFunctionParameters(uint16_t data, bool repeat) {
DBG_PRINT("sendLegoPowerFunctions(data=");
DBG_PRINT(data);
DBG_PRINT(", repeat=");
DBG_PRINTLN(repeat?"true)" : "false)");
}
} // anonymous namespace
#endif // DEBUG
void IRsend::sendLegoPowerFunctions(uint16_t data, bool repeat)
{
#if DEBUG
::logFunctionParameters(data, repeat);
#endif // DEBUG
enableIROut(38);
static LegoPfBitStreamEncoder bitStreamEncoder;
bitStreamEncoder.reset(data, repeat);
do {
mark(bitStreamEncoder.getMarkDuration());
space(bitStreamEncoder.getPauseDuration());
} while (bitStreamEncoder.next());
}
#endif // SEND_LEGO_PF

View File

@@ -1,115 +0,0 @@
//==============================================================================
// L EEEEEE EEEE OOOO
// L E E O O
// L EEEE E EEE O O
// L E E E O O LEGO Power Functions
// LLLLLL EEEEEE EEEE OOOO Copyright (c) 2016, 2017 Philipp Henkel
//==============================================================================
//+=============================================================================
//
class LegoPfBitStreamEncoder {
private:
uint16_t data;
bool repeatMessage;
uint8_t messageBitIdx;
uint8_t repeatCount;
uint16_t messageLength;
public:
// HIGH data bit = IR mark + high pause
// LOW data bit = IR mark + low pause
static const uint16_t LOW_BIT_DURATION = 421;
static const uint16_t HIGH_BIT_DURATION = 711;
static const uint16_t START_BIT_DURATION = 1184;
static const uint16_t STOP_BIT_DURATION = 1184;
static const uint8_t IR_MARK_DURATION = 158;
static const uint16_t HIGH_PAUSE_DURATION = HIGH_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t LOW_PAUSE_DURATION = LOW_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t START_PAUSE_DURATION = START_BIT_DURATION - IR_MARK_DURATION;
static const uint16_t STOP_PAUSE_DURATION = STOP_BIT_DURATION - IR_MARK_DURATION;
static const uint8_t MESSAGE_BITS = 18;
static const uint16_t MAX_MESSAGE_LENGTH = 16000;
void reset(uint16_t data, bool repeatMessage) {
this->data = data;
this->repeatMessage = repeatMessage;
messageBitIdx = 0;
repeatCount = 0;
messageLength = getMessageLength();
}
int getChannelId() const { return 1 + ((data >> 12) & 0x3); }
uint16_t getMessageLength() const {
// Sum up all marks
uint16_t length = MESSAGE_BITS * IR_MARK_DURATION;
// Sum up all pauses
length += START_PAUSE_DURATION;
for (unsigned long mask = 1UL << 15; mask; mask >>= 1) {
if (data & mask) {
length += HIGH_PAUSE_DURATION;
} else {
length += LOW_PAUSE_DURATION;
}
}
length += STOP_PAUSE_DURATION;
return length;
}
boolean next() {
messageBitIdx++;
if (messageBitIdx >= MESSAGE_BITS) {
repeatCount++;
messageBitIdx = 0;
}
if (repeatCount >= 1 && !repeatMessage) {
return false;
} else if (repeatCount >= 5) {
return false;
} else {
return true;
}
}
uint8_t getMarkDuration() const { return IR_MARK_DURATION; }
uint32_t getPauseDuration() const {
if (messageBitIdx == 0)
return START_PAUSE_DURATION;
else if (messageBitIdx < MESSAGE_BITS - 1) {
return getDataBitPause();
} else {
return getStopPause();
}
}
private:
uint16_t getDataBitPause() const {
const int pos = MESSAGE_BITS - 2 - messageBitIdx;
const bool isHigh = data & (1 << pos);
return isHigh ? HIGH_PAUSE_DURATION : LOW_PAUSE_DURATION;
}
uint32_t getStopPause() const {
if (repeatMessage) {
return getRepeatStopPause();
} else {
return STOP_PAUSE_DURATION;
}
}
uint32_t getRepeatStopPause() const {
if (repeatCount == 0 || repeatCount == 1) {
return STOP_PAUSE_DURATION + (uint32_t)5 * MAX_MESSAGE_LENGTH - messageLength;
} else if (repeatCount == 2 || repeatCount == 3) {
return STOP_PAUSE_DURATION
+ (uint32_t)(6 + 2 * getChannelId()) * MAX_MESSAGE_LENGTH - messageLength;
} else {
return STOP_PAUSE_DURATION;
}
}
};

View File

@@ -1,85 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// MMMMM IIIII TTTTT SSSS U U BBBB IIIII SSSS H H IIIII
// M M M I T S U U B B I S H H I
// M M M I T SSS U U BBBB I SSS HHHHH I
// M M I T S U U B B I S H H I
// M M IIIII T SSSS UUU BBBBB IIIII SSSS H H IIIII
//==============================================================================
// Looks like Sony except for timings, 48 chars of data and time/space different
#define MITSUBISHI_BITS 16
// Mitsubishi RM 75501
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
// #define MITSUBISHI_RPT_LENGTH 45000
//+=============================================================================
#if DECODE_MITSUBISHI
bool IRrecv::decodeMitsubishi (decode_results *results)
{
// Serial.print("?!? decoding Mitsubishi:");Serial.print(irparams.rawlen); Serial.print(" want "); Serial.println( 2 * MITSUBISHI_BITS + 2);
long data = 0;
if (irparams.rawlen < 2 * MITSUBISHI_BITS + 2) return false ;
int offset = 0; // Skip first space
// Initial space
#if 0
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
Serial.print("IR Gap: ");
Serial.println( results->rawbuf[offset]);
Serial.println( "test against:");
Serial.println(results->rawbuf[offset]);
#endif
#if 0
// Not seeing double keys from Mitsubishi
if (results->rawbuf[offset] < MITSUBISHI_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = MITSUBISHI;
return true;
}
#endif
offset++;
// Typical
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// Initial Space
if (!MATCH_MARK(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) return false ;
offset++;
while (offset + 1 < irparams.rawlen) {
if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ZERO_MARK)) data <<= 1 ;
else return false ;
offset++;
if (!MATCH_SPACE(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) break ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < MITSUBISHI_BITS) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = MITSUBISHI;
return true;
}
#endif

View File

@@ -1,98 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// N N EEEEE CCCC
// NN N E C
// N N N EEE C
// N NN E C
// N N EEEEE CCCC
//==============================================================================
#define NEC_BITS 32
#define NEC_HDR_MARK 9000
#define NEC_HDR_SPACE 4500
#define NEC_BIT_MARK 560
#define NEC_ONE_SPACE 1690
#define NEC_ZERO_SPACE 560
#define NEC_RPT_SPACE 2250
//+=============================================================================
#if SEND_NEC
void IRsend::sendNEC (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(NEC_HDR_MARK);
space(NEC_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(NEC_BIT_MARK);
space(NEC_ONE_SPACE);
} else {
mark(NEC_BIT_MARK);
space(NEC_ZERO_SPACE);
}
}
// Footer
mark(NEC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
// NECs have a repeat only 4 items long
//
#if DECODE_NEC
bool IRrecv::decodeNEC (decode_results *results)
{
long data = 0; // We decode in to here; Start with nothing
int offset = 1; // Index in to results; Skip first entry!?
// Check header "mark"
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) return false ;
offset++;
// Check for repeat
if ( (irparams.rawlen == 4)
&& MATCH_SPACE(results->rawbuf[offset ], NEC_RPT_SPACE)
&& MATCH_MARK (results->rawbuf[offset+1], NEC_BIT_MARK )
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = NEC;
return true;
}
// Check we have enough data
if (irparams.rawlen < (2 * NEC_BITS) + 4) return false ;
// Check header "space"
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) return false ;
offset++;
// Build the data
for (int i = 0; i < NEC_BITS; i++) {
// Check data "mark"
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) return false ;
offset++;
// Suppend this bit
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = NEC_BITS;
results->value = data;
results->decode_type = NEC;
return true;
}
#endif

View File

@@ -1,78 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// PPPP AAA N N AAA SSSS OOO N N IIIII CCCC
// P P A A NN N A A S O O NN N I C
// PPPP AAAAA N N N AAAAA SSS O O N N N I C
// P A A N NN A A S O O N NN I C
// P A A N N A A SSSS OOO N N IIIII CCCC
//==============================================================================
#define PANASONIC_BITS 48
#define PANASONIC_HDR_MARK 3502
#define PANASONIC_HDR_SPACE 1750
#define PANASONIC_BIT_MARK 502
#define PANASONIC_ONE_SPACE 1244
#define PANASONIC_ZERO_SPACE 400
//+=============================================================================
#if SEND_PANASONIC
void IRsend::sendPanasonic (unsigned int address, unsigned long data)
{
// Set IR carrier frequency
enableIROut(35);
// Header
mark(PANASONIC_HDR_MARK);
space(PANASONIC_HDR_SPACE);
// Address
for (unsigned long mask = 1UL << (16 - 1); mask; mask >>= 1) {
mark(PANASONIC_BIT_MARK);
if (address & mask) space(PANASONIC_ONE_SPACE) ;
else space(PANASONIC_ZERO_SPACE) ;
}
// Data
for (unsigned long mask = 1UL << (32 - 1); mask; mask >>= 1) {
mark(PANASONIC_BIT_MARK);
if (data & mask) space(PANASONIC_ONE_SPACE) ;
else space(PANASONIC_ZERO_SPACE) ;
}
// Footer
mark(PANASONIC_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_PANASONIC
bool IRrecv::decodePanasonic (decode_results *results)
{
unsigned long long data = 0;
int offset = 1;
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_HDR_MARK )) return false ;
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_HDR_SPACE)) return false ;
// decode address
for (int i = 0; i < PANASONIC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
results->value = (unsigned long)data;
results->address = (unsigned int)(data >> 32);
results->decode_type = PANASONIC;
results->bits = PANASONIC_BITS;
return true;
}
#endif

View File

@@ -1,207 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//+=============================================================================
// Gets one undecoded level at a time from the raw buffer.
// The RC5/6 decoding is easier if the data is broken into time intervals.
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1,
// successive calls to getRClevel will return MARK, MARK, SPACE.
// offset and used are updated to keep track of the current position.
// t1 is the time interval for a single bit in microseconds.
// Returns -1 for error (measured time interval is not a multiple of t1).
//
#if (DECODE_RC5 || DECODE_RC6)
int IRrecv::getRClevel (decode_results *results, int *offset, int *used, int t1)
{
int width;
int val;
int correction;
int avail;
if (*offset >= results->rawlen) return SPACE ; // After end of recorded buffer, assume SPACE.
width = results->rawbuf[*offset];
val = ((*offset) % 2) ? MARK : SPACE;
correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS;
if (MATCH(width, ( t1) + correction)) avail = 1 ;
else if (MATCH(width, (2*t1) + correction)) avail = 2 ;
else if (MATCH(width, (3*t1) + correction)) avail = 3 ;
else return -1 ;
(*used)++;
if (*used >= avail) {
*used = 0;
(*offset)++;
}
DBG_PRINTLN( (val == MARK) ? "MARK" : "SPACE" );
return val;
}
#endif
//==============================================================================
// RRRR CCCC 55555
// R R C 5
// RRRR C 5555
// R R C 5
// R R CCCC 5555
//
// NB: First bit must be a one (start bit)
//
#define MIN_RC5_SAMPLES 11
#define RC5_T1 889
#define RC5_RPT_LENGTH 46000
//+=============================================================================
#if SEND_RC5
void IRsend::sendRC5 (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(36);
// Start
mark(RC5_T1);
space(RC5_T1);
mark(RC5_T1);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
space(RC5_T1); // 1 is space, then mark
mark(RC5_T1);
} else {
mark(RC5_T1);
space(RC5_T1);
}
}
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_RC5
bool IRrecv::decodeRC5 (decode_results *results)
{
int nbits;
long data = 0;
int used = 0;
int offset = 1; // Skip gap space
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) return false ;
// Get start bits
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return false ;
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return false ;
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return false ;
for (nbits = 0; offset < irparams.rawlen; nbits++) {
int levelA = getRClevel(results, &offset, &used, RC5_T1);
int levelB = getRClevel(results, &offset, &used, RC5_T1);
if ((levelA == SPACE) && (levelB == MARK )) data = (data << 1) | 1 ;
else if ((levelA == MARK ) && (levelB == SPACE)) data = (data << 1) | 0 ;
else return false ;
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC5;
return true;
}
#endif
//+=============================================================================
// RRRR CCCC 6666
// R R C 6
// RRRR C 6666
// R R C 6 6
// R R CCCC 666
//
// NB : Caller needs to take care of flipping the toggle bit
//
#define MIN_RC6_SAMPLES 1
#define RC6_HDR_MARK 2666
#define RC6_HDR_SPACE 889
#define RC6_T1 444
#define RC6_RPT_LENGTH 46000
#if SEND_RC6
void IRsend::sendRC6 (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(36);
// Header
mark(RC6_HDR_MARK);
space(RC6_HDR_SPACE);
// Start bit
mark(RC6_T1);
space(RC6_T1);
// Data
for (unsigned long i = 1, mask = 1UL << (nbits - 1); mask; i++, mask >>= 1) {
// The fourth bit we send is a "double width trailer bit"
int t = (i == 4) ? (RC6_T1 * 2) : (RC6_T1) ;
if (data & mask) {
mark(t);
space(t);
} else {
space(t);
mark(t);
}
}
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_RC6
bool IRrecv::decodeRC6 (decode_results *results)
{
int nbits;
long data = 0;
int used = 0;
int offset = 1; // Skip first space
if (results->rawlen < MIN_RC6_SAMPLES) return false ;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], RC6_HDR_MARK)) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], RC6_HDR_SPACE)) return false ;
// Get start bit (1)
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return false ;
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return false ;
for (nbits = 0; offset < results->rawlen; nbits++) {
int levelA, levelB; // Next two levels
levelA = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return false;
}
levelB = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return false;
}
if ((levelA == MARK ) && (levelB == SPACE)) data = (data << 1) | 1 ; // inverted compared to RC5
else if ((levelA == SPACE) && (levelB == MARK )) data = (data << 1) | 0 ; // ...
else return false ; // Error
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC6;
return true;
}
#endif

View File

@@ -1,92 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// SSSS AAA MMM SSSS U U N N GGGG
// S A A M M M S U U NN N G
// SSS AAAAA M M M SSS U U N N N G GG
// S A A M M S U U N NN G G
// SSSS A A M M SSSS UUU N N GGG
//==============================================================================
#define SAMSUNG_BITS 32
#define SAMSUNG_HDR_MARK 5000
#define SAMSUNG_HDR_SPACE 5000
#define SAMSUNG_BIT_MARK 560
#define SAMSUNG_ONE_SPACE 1600
#define SAMSUNG_ZERO_SPACE 560
#define SAMSUNG_RPT_SPACE 2250
//+=============================================================================
#if SEND_SAMSUNG
void IRsend::sendSAMSUNG (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark(SAMSUNG_HDR_MARK);
space(SAMSUNG_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SAMSUNG_BIT_MARK);
space(SAMSUNG_ONE_SPACE);
} else {
mark(SAMSUNG_BIT_MARK);
space(SAMSUNG_ZERO_SPACE);
}
}
// Footer
mark(SAMSUNG_BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
// SAMSUNGs have a repeat only 4 items long
//
#if DECODE_SAMSUNG
bool IRrecv::decodeSAMSUNG (decode_results *results)
{
long data = 0;
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], SAMSUNG_HDR_MARK)) return false ;
offset++;
// Check for repeat
if ( (irparams.rawlen == 4)
&& MATCH_SPACE(results->rawbuf[offset], SAMSUNG_RPT_SPACE)
&& MATCH_MARK(results->rawbuf[offset+1], SAMSUNG_BIT_MARK)
) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = SAMSUNG;
return true;
}
if (irparams.rawlen < (2 * SAMSUNG_BITS) + 4) return false ;
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset++], SAMSUNG_HDR_SPACE)) return false ;
for (int i = 0; i < SAMSUNG_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], SAMSUNG_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], SAMSUNG_ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], SAMSUNG_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = SAMSUNG_BITS;
results->value = data;
results->decode_type = SAMSUNG;
return true;
}
#endif

View File

@@ -1,76 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// SSSS AAA N N Y Y OOO
// S A A NN N Y Y O O
// SSS AAAAA N N N Y O O
// S A A N NN Y O O
// SSSS A A N N Y OOO
//==============================================================================
// I think this is a Sanyo decoder: Serial = SA 8650B
// Looks like Sony except for timings, 48 chars of data and time/space different
#define SANYO_BITS 12
#define SANYO_HDR_MARK 3500 // seen range 3500
#define SANYO_HDR_SPACE 950 // seen 950
#define SANYO_ONE_MARK 2400 // seen 2400
#define SANYO_ZERO_MARK 700 // seen 700
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
#define SANYO_RPT_LENGTH 45000
//+=============================================================================
#if DECODE_SANYO
bool IRrecv::decodeSanyo (decode_results *results)
{
long data = 0;
int offset = 0; // Skip first space <-- CHECK THIS!
if (irparams.rawlen < (2 * SANYO_BITS) + 2) return false ;
#if 0
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
Serial.print("IR Gap: ");
Serial.println( results->rawbuf[offset]);
Serial.println( "test against:");
Serial.println(results->rawbuf[offset]);
#endif
// Initial space
if (results->rawbuf[offset] < SANYO_DOUBLE_SPACE_USECS) {
//Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = SANYO;
return true;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], SANYO_HDR_MARK)) return false ;
// Skip Second Mark
if (!MATCH_MARK(results->rawbuf[offset++], SANYO_HDR_MARK)) return false ;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset++], SANYO_HDR_SPACE)) break ;
if (MATCH_MARK(results->rawbuf[offset], SANYO_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], SANYO_ZERO_MARK)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = SANYO;
return true;
}
#endif

View File

@@ -1,71 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// SSSS H H AAA RRRR PPPP
// S H H A A R R P P
// SSS HHHHH AAAAA RRRR PPPP
// S H H A A R R P
// SSSS H H A A R R P
//==============================================================================
// Sharp and DISH support by Todd Treece: http://unionbridge.org/design/ircommand
//
// The send function has the necessary repeat built in because of the need to
// invert the signal.
//
// Sharp protocol documentation:
// http://www.sbprojects.com/knowledge/ir/sharp.htm
//
// Here is the LIRC file I found that seems to match the remote codes from the
// oscilloscope:
// Sharp LCD TV:
// http://lirc.sourceforge.net/remotes/sharp/GA538WJSA
#define SHARP_BITS 15
#define SHARP_BIT_MARK 245
#define SHARP_ONE_SPACE 1805
#define SHARP_ZERO_SPACE 795
#define SHARP_GAP 600000
#define SHARP_RPT_SPACE 3000
#define SHARP_TOGGLE_MASK 0x3FF
//+=============================================================================
#if SEND_SHARP
void IRsend::sendSharpRaw (unsigned long data, int nbits)
{
enableIROut(38);
// Sending codes in bursts of 3 (normal, inverted, normal) makes transmission
// much more reliable. That's the exact behaviour of CD-S6470 remote control.
for (int n = 0; n < 3; n++) {
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SHARP_BIT_MARK);
space(SHARP_ONE_SPACE);
} else {
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
}
}
mark(SHARP_BIT_MARK);
space(SHARP_ZERO_SPACE);
delay(40);
data = data ^ SHARP_TOGGLE_MASK;
}
}
#endif
//+=============================================================================
// Sharp send compatible with data obtained through decodeSharp()
// ^^^^^^^^^^^^^ FUNCTION MISSING!
//
#if SEND_SHARP
void IRsend::sendSharp (unsigned int address, unsigned int command)
{
sendSharpRaw((address << 10) | (command << 2) | 2, SHARP_BITS);
}
#endif

View File

@@ -1,95 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// SSSS OOO N N Y Y
// S O O NN N Y Y
// SSS O O N N N Y
// S O O N NN Y
// SSSS OOO N N Y
//==============================================================================
#define SONY_BITS 12
#define SONY_HDR_MARK 2400
#define SONY_HDR_SPACE 600
#define SONY_ONE_MARK 1200
#define SONY_ZERO_MARK 600
#define SONY_RPT_LENGTH 45000
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
//+=============================================================================
#if SEND_SONY
void IRsend::sendSony (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(40);
// Header
mark(SONY_HDR_MARK);
space(SONY_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(SONY_ONE_MARK);
space(SONY_HDR_SPACE);
} else {
mark(SONY_ZERO_MARK);
space(SONY_HDR_SPACE);
}
}
// We will have ended with LED off
}
#endif
//+=============================================================================
#if DECODE_SONY
bool IRrecv::decodeSony (decode_results *results)
{
long data = 0;
int offset = 0; // Dont skip first space, check its size
if (irparams.rawlen < (2 * SONY_BITS) + 2) return false ;
// Some Sony's deliver repeats fast after first
// unfortunately can't spot difference from of repeat from two fast clicks
if (results->rawbuf[offset] < SONY_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
# ifdef DECODE_SANYO
results->decode_type = SANYO;
# else
results->decode_type = UNKNOWN;
# endif
return true;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset++], SONY_HDR_MARK)) return false ;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset++], SONY_HDR_SPACE)) break ;
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) data = (data << 1) | 1 ;
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return false;
}
results->value = data;
results->decode_type = SONY;
return true;
}
#endif

View File

@@ -1,179 +0,0 @@
/*
Assuming the protocol we are adding is for the (imaginary) manufacturer: Shuzu
Our fantasy protocol is a standard protocol, so we can use this standard
template without too much work. Some protocols are quite unique and will require
considerably more work in this file! It is way beyond the scope of this text to
explain how to reverse engineer "unusual" IR protocols. But, unless you own an
oscilloscope, the starting point is probably to use the rawDump.ino sketch and
try to spot the pattern!
Before you start, make sure the IR library is working OK:
# Open up the Arduino IDE
# Load up the rawDump.ino example sketch
# Run it
Now we can start to add our new protocol...
1. Copy this file to : ir_Shuzu.cpp
2. Replace all occurrences of "Shuzu" with the name of your protocol.
3. Tweak the #defines to suit your protocol.
4. If you're lucky, tweaking the #defines will make the default send() function
work.
5. Again, if you're lucky, tweaking the #defines will have made the default
decode() function work.
You have written the code to support your new protocol!
Now you must do a few things to add it to the IRremote system:
1. Open IRremote.h and make the following changes:
REMEMEBER to change occurences of "SHUZU" with the name of your protocol
A. At the top, in the section "Supported Protocols", add:
#define DECODE_SHUZU 1
#define SEND_SHUZU 1
B. In the section "enumerated list of all supported formats", add:
SHUZU,
to the end of the list (notice there is a comma after the protocol name)
C. Further down in "Main class for receiving IR", add:
//......................................................................
#if DECODE_SHUZU
bool decodeShuzu (decode_results *results) ;
#endif
D. Further down in "Main class for sending IR", add:
//......................................................................
#if SEND_SHUZU
void sendShuzu (unsigned long data, int nbits) ;
#endif
E. Save your changes and close the file
2. Now open irRecv.cpp and make the following change:
A. In the function IRrecv::decode(), add:
#ifdef DECODE_NEC
DBG_PRINTLN("Attempting Shuzu decode");
if (decodeShuzu(results)) return true ;
#endif
B. Save your changes and close the file
You will probably want to add your new protocol to the example sketch
3. Open MyDocuments\Arduino\libraries\IRremote\examples\IRrecvDumpV2.ino
A. In the encoding() function, add:
case SHUZU: Serial.print("SHUZU"); break ;
Now open the Arduino IDE, load up the rawDump.ino sketch, and run it.
Hopefully it will compile and upload.
If it doesn't, you've done something wrong. Check your work.
If you can't get it to work - seek help from somewhere.
If you get this far, I will assume you have successfully added your new protocol
There is one last thing to do.
1. Delete this giant instructional comment.
2. Send a copy of your work to us so we can include it in the library and
others may benefit from your hard work and maybe even write a song about how
great you are for helping them! :)
Regards,
BlueChip
*/
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
//
//
// S H U Z U
//
//
//==============================================================================
#define BITS 32 // The number of bits in the command
#define HDR_MARK 1000 // The length of the Header:Mark
#define HDR_SPACE 2000 // The lenght of the Header:Space
#define BIT_MARK 3000 // The length of a Bit:Mark
#define ONE_SPACE 4000 // The length of a Bit:Space for 1's
#define ZERO_SPACE 5000 // The length of a Bit:Space for 0's
#define OTHER 1234 // Other things you may need to define
//+=============================================================================
//
#if SEND_SHUZU
void IRsend::sendShuzu (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Header
mark (HDR_MARK);
space(HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark (BIT_MARK);
space(ONE_SPACE);
} else {
mark (BIT_MARK);
space(ZERO_SPACE);
}
}
// Footer
mark(BIT_MARK);
space(0); // Always end with the LED off
}
#endif
//+=============================================================================
//
#if DECODE_SHUZU
bool IRrecv::decodeShuzu (decode_results *results)
{
unsigned long data = 0; // Somewhere to build our code
int offset = 1; // Skip the Gap reading
// Check we have the right amount of data
if (irparams.rawlen != 1 + 2 + (2 * BITS) + 1) return false ;
// Check initial Mark+Space match
if (!MATCH_MARK (results->rawbuf[offset++], HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], HDR_SPACE)) return false ;
// Read the bits in
for (int i = 0; i < SHUZU_BITS; i++) {
// Each bit looks like: MARK + SPACE_1 -> 1
// or : MARK + SPACE_0 -> 0
if (!MATCH_MARK(results->rawbuf[offset++], BIT_MARK)) return false ;
// IR data is big-endian, so we shuffle it in from the right:
if (MATCH_SPACE(results->rawbuf[offset], ONE_SPACE)) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// Success
results->bits = BITS;
results->value = data;
results->decode_type = SHUZU;
return true;
}
#endif

View File

@@ -1,91 +0,0 @@
#include "IRremote.h"
#include "IRremoteInt.h"
//==============================================================================
// W W H H Y Y N N TTTTT EEEEE RRRRR
// W W H H Y Y NN N T E R R
// W W W HHHHH Y N N N T EEE RRRR
// W W W H H Y N NN T E R R
// WWW H H Y N N T EEEEE R R
//==============================================================================
#define WHYNTER_BITS 32
#define WHYNTER_HDR_MARK 2850
#define WHYNTER_HDR_SPACE 2850
#define WHYNTER_BIT_MARK 750
#define WHYNTER_ONE_MARK 750
#define WHYNTER_ONE_SPACE 2150
#define WHYNTER_ZERO_MARK 750
#define WHYNTER_ZERO_SPACE 750
//+=============================================================================
#if SEND_WHYNTER
void IRsend::sendWhynter (unsigned long data, int nbits)
{
// Set IR carrier frequency
enableIROut(38);
// Start
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE);
// Header
mark(WHYNTER_HDR_MARK);
space(WHYNTER_HDR_SPACE);
// Data
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) {
if (data & mask) {
mark(WHYNTER_ONE_MARK);
space(WHYNTER_ONE_SPACE);
} else {
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE);
}
}
// Footer
mark(WHYNTER_ZERO_MARK);
space(WHYNTER_ZERO_SPACE); // Always end with the LED off
}
#endif
//+=============================================================================
#if DECODE_WHYNTER
bool IRrecv::decodeWhynter (decode_results *results)
{
long data = 0;
int offset = 1; // skip initial space
// Check we have the right amount of data
if (irparams.rawlen < (2 * WHYNTER_BITS) + 6) return false ;
// Sequence begins with a bit mark and a zero space
if (!MATCH_MARK (results->rawbuf[offset++], WHYNTER_BIT_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], WHYNTER_ZERO_SPACE)) return false ;
// header mark and space
if (!MATCH_MARK (results->rawbuf[offset++], WHYNTER_HDR_MARK )) return false ;
if (!MATCH_SPACE(results->rawbuf[offset++], WHYNTER_HDR_SPACE)) return false ;
// data bits
for (int i = 0; i < WHYNTER_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], WHYNTER_BIT_MARK)) return false ;
if (MATCH_SPACE(results->rawbuf[offset], WHYNTER_ONE_SPACE )) data = (data << 1) | 1 ;
else if (MATCH_SPACE(results->rawbuf[offset], WHYNTER_ZERO_SPACE)) data = (data << 1) | 0 ;
else return false ;
offset++;
}
// trailing mark
if (!MATCH_MARK(results->rawbuf[offset], WHYNTER_BIT_MARK)) return false ;
// Success
results->bits = WHYNTER_BITS;
results->value = data;
results->decode_type = WHYNTER;
return true;
}
#endif

View File

@@ -1,53 +0,0 @@
#######################################
# Syntax Coloring Map For IRremote
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
decode_results KEYWORD1
IRrecv KEYWORD1
IRsend KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
blink13 KEYWORD2
decode KEYWORD2
enableIRIn KEYWORD2
resume KEYWORD2
enableIROut KEYWORD2
sendNEC KEYWORD2
sendSony KEYWORD2
sendSanyo KEYWORD2
sendMitsubishi KEYWORD2
sendRaw KEYWORD2
sendRC5 KEYWORD2
sendRC6 KEYWORD2
sendDISH KEYWORD2
sendSharp KEYWORD2
sendSharpRaw KEYWORD2
sendPanasonic KEYWORD2
sendJVC KEYWORD2
sendLG KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
NEC LITERAL1
SONY LITERAL1
SANYO LITERAL1
MITSUBISHI LITERAL1
RC5 LITERAL1
RC6 LITERAL1
DISH LITERAL1
SHARP LITERAL1
PANASONIC LITERAL1
JVC LITERAL1
LG LITERAL1
AIWA_RC_T501 LITERAL1
UNKNOWN LITERAL1
REPEAT LITERAL1

View File

@@ -1,24 +0,0 @@
{
"name": "IRremote",
"keywords": "infrared, ir, remote",
"description": "Send and receive infrared signals with multiple protocols",
"repository":
{
"type": "git",
"url": "https://github.com/z3t0/Arduino-IRremote.git"
},
"version": "2.3.3",
"frameworks": "arduino",
"platforms": "atmelavr",
"authors" :
[
{
"name":"Rafi Khan",
"email":"zetoslab@gmail.com"
},
{
"name":"Ken Shirriff",
"email":"ken.shirriff@gmail.com"
}
]
}

View File

@@ -1,9 +0,0 @@
name=IRremote
version=2.2.3
author=shirriff
maintainer=shirriff
sentence=Send and receive infrared signals with multiple protocols
paragraph=Send and receive infrared signals with multiple protocols
category=Signal Input/Output
url=https://github.com/shirriff/Arduino-IRremote.git
architectures=*

View File

@@ -1,5 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
#include "src/ArduinoJson.h"

View File

@@ -1,478 +0,0 @@
ArduinoJson: change log
=======================
v5.13.3
-------
* Improved float serialization when `-fsingle-precision-constant` is used
* Fixed `JsonVariant::is<int>()` that returned true for empty strings
* Fixed `JsonVariant::is<String>()` (closes #763)
v5.13.2
-------
* Fixed `JsonBuffer::parse()` not respecting nesting limit correctly (issue #693)
* Fixed inconsistencies in nesting level counting (PR #695 from Zhenyu Wu)
* Fixed null values that could be pass to `strcmp()` (PR #745 from Mike Karlesky)
* Added macros `ARDUINOJSON_VERSION`, `ARDUINOJSON_VERSION_MAJOR`...
v5.13.1
-------
* Fixed `JsonVariant::operator|(int)` that returned the default value if the variant contained a double (issue #675)
* Allowed non-quoted key to contain underscores (issue #665)
v5.13.0
-------
* Changed the rules of string duplication (issue #658)
* `RawJson()` accepts any kind of string and obeys to the same rules for duplication
* Changed the return type of `strdup()` to `const char*` to prevent double duplication
* Marked `strdup()` as deprecated
> ### New rules for string duplication
>
> | type | duplication |
> |:---------------------------|:------------|
> | const char* | no |
> | char* | ~~no~~ yes |
> | String | yes |
> | std::string | yes |
> | const __FlashStringHelper* | yes |
>
> These new rules make `JsonBuffer::strdup()` useless.
v5.12.0
-------
* Added `JsonVariant::operator|` to return a default value (see below)
* Added a clear error message when compiled as C instead of C++ (issue #629)
* Added detection of MPLAB XC compiler (issue #629)
* Added detection of Keil ARM Compiler (issue #629)
* Added an example that shows how to save and load a configuration file
* Reworked all other examples
> ### How to use the new feature?
>
> If you have a block like this:
>
> ```c++
> const char* ssid = root["ssid"];
> if (!ssid)
> ssid = "default ssid";
> ```
>
> You can simplify like that:
>
> ```c++
> const char* ssid = root["ssid"] | "default ssid";
> ```
v5.11.2
-------
* Fixed `DynamicJsonBuffer::clear()` not resetting allocation size (issue #561)
* Fixed incorrect rounding for float values (issue #588)
v5.11.1
-------
* Removed dependency on `PGM_P` as Particle 0.6.2 doesn't define it (issue #546)
* Fixed warning "dereferencing type-punned pointer will break strict-aliasing rules [-Wstrict-aliasing]"
* Fixed warning "floating constant exceeds range of 'float' [-Woverflow]" (issue #544)
* Fixed warning "this statement may fall through" [-Wimplicit-fallthrough=] (issue #539)
* Removed `ARDUINOJSON_DOUBLE_IS_64BITS` as it became useless.
* Fixed too many decimals places in float serialization (issue #543)
v5.11.0
-------
* Made `JsonBuffer` non-copyable (PR #524 by @luisrayas3)
* Added `StaticJsonBuffer::clear()`
* Added `DynamicJsonBuffer::clear()`
v5.10.1
-------
* Fixed IntelliSense errors in Visual Micro (issue #483)
* Fixed compilation in IAR Embedded Workbench (issue #515)
* Fixed reading "true" as a float (issue #516)
* Added `ARDUINOJSON_DOUBLE_IS_64BITS`
* Added `ARDUINOJSON_EMBEDDED_MODE`
v5.10.0
-------
* Removed configurable number of decimal places (issues #288, #427 and #506)
* Changed exponentiation thresholds to `1e7` and `1e-5` (issues #288, #427 and #506)
* `JsonVariant::is<double>()` now returns `true` for integers
* Fixed error `IsBaseOf is not a member of ArduinoJson::TypeTraits` (issue #495)
* Fixed error `forming reference to reference` (issue #495)
> ### BREAKING CHANGES :warning:
>
> | Old syntax | New syntax |
> |:--------------------------------|:--------------------|
> | `double_with_n_digits(3.14, 2)` | `3.14` |
> | `float_with_n_digits(3.14, 2)` | `3.14f` |
> | `obj.set("key", 3.14, 2)` | `obj["key"] = 3.14` |
> | `arr.add(3.14, 2)` | `arr.add(3.14)` |
>
> | Input | Old output | New output |
> |:----------|:-----------|:-----------|
> | `3.14159` | `3.14` | `3.14159` |
> | `42.0` | `42.00` | `42` |
> | `0.0` | `0.00` | `0` |
>
> | Expression | Old result | New result |
> |:-------------------------------|:-----------|:-----------|
> | `JsonVariant(42).is<int>()` | `true` | `true` |
> | `JsonVariant(42).is<float>()` | `false` | `true` |
> | `JsonVariant(42).is<double>()` | `false` | `true` |
v5.9.0
------
* Added `JsonArray::remove(iterator)` (issue #479)
* Added `JsonObject::remove(iterator)`
* Renamed `JsonArray::removeAt(size_t)` into `remove(size_t)`
* Renamed folder `include/` to `src/`
* Fixed warnings `floating constant exceeds range of float`and `floating constant truncated to zero` (issue #483)
* Removed `Print` class and converted `printTo()` to a template method (issue #276)
* Removed example `IndentedPrintExample.ino`
* Now compatible with Particle 0.6.1, thanks to Jacob Nite (issue #294 and PR #461 by @foodbag)
v5.8.4
------
* Added custom implementation of `strtod()` (issue #453)
* Added custom implementation of `strtol()` (issue #465)
* `char` is now treated as an integral type (issue #337, #370)
v5.8.3
------
* Fixed an access violation in `DynamicJsonBuffer` when memory allocation fails (issue #433)
* Added operators `==` and `!=` for two `JsonVariant`s (issue #436)
* Fixed `JsonVariant::operator[const FlashStringHelper*]` (issue #441)
v5.8.2
------
* Fixed parsing of comments (issue #421)
* Fixed ignored `Stream` timeout (issue #422)
* Made sure we don't read more that necessary (issue #422)
* Fixed error when the key of a `JsonObject` is a `char[]` (issue #423)
* Reduced code size when using `const` references
* Fixed error with string of type `unsigned char*` (issue #428)
* Added `deprecated` attribute on `asArray()`, `asObject()` and `asString()` (issue #420)
v5.8.1
------
* Fixed error when assigning a `volatile int` to a `JsonVariant` (issue #415)
* Fixed errors with Variable Length Arrays (issue #416)
* Fixed error when both `ARDUINOJSON_ENABLE_STD_STREAM` and `ARDUINOJSON_ENABLE_ARDUINO_STREAM` are set to `1`
* Fixed error "Stream does not name a type" (issue #412)
v5.8.0
------
* Added operator `==` to compare `JsonVariant` and strings (issue #402)
* Added support for `Stream` (issue #300)
* Reduced memory consumption by not duplicating spaces and comments
> ### BREAKING CHANGES :warning:
>
> `JsonBuffer::parseObject()` and `JsonBuffer::parseArray()` have been pulled down to the derived classes `DynamicJsonBuffer` and `StaticJsonBufferBase`.
>
> This means that if you have code like:
>
> ```c++
> void myFunction(JsonBuffer& jsonBuffer);
> ```
>
> you need to replace it with one of the following:
>
> ```c++
> void myFunction(DynamicJsonBuffer& jsonBuffer);
> void myFunction(StaticJsonBufferBase& jsonBuffer);
> template<typename TJsonBuffer> void myFunction(TJsonBuffer& jsonBuffer);
> ```
v5.7.3
------
* Added an `printTo(char[N])` and `prettyPrintTo(char[N])` (issue #292)
* Added ability to set a nested value like this: `root["A"]["B"] = "C"` (issue #352)
* Renamed `*.ipp` to `*Impl.hpp` because they were ignored by Arduino IDE (issue #396)
v5.7.2
------
* Made PROGMEM available on more platforms (issue #381)
* Fixed PROGMEM causing an exception on ESP8266 (issue #383)
v5.7.1
------
* Added support for PROGMEM (issue #76)
* Fixed compilation error when index is not an `int` (issue #381)
v5.7.0
------
* Templatized all functions using `String` or `std::string`
* Removed `ArduinoJson::String`
* Removed `JsonVariant::defaultValue<T>()`
* Removed non-template `JsonObject::get()` and `JsonArray.get()`
* Fixed support for `StringSumHelper` (issue #184)
* Replaced `ARDUINOJSON_USE_ARDUINO_STRING` by `ARDUINOJSON_ENABLE_STD_STRING` and `ARDUINOJSON_ENABLE_ARDUINO_STRING` (issue #378)
* Added example `StringExample.ino` to show where `String` can be used
* Increased default nesting limit to 50 when compiled for a computer (issue #349)
> ### BREAKING CHANGES :warning:
>
> The non-template functions `JsonObject::get()` and `JsonArray.get()` have been removed. This means that you need to explicitely tell the type you expect in return.
>
> Old code:
>
> ```c++
> #define ARDUINOJSON_USE_ARDUINO_STRING 0
> JsonVariant value1 = myObject.get("myKey");
> JsonVariant value2 = myArray.get(0);
> ```
>
> New code:
>
> ```c++
> #define ARDUINOJSON_ENABLE_ARDUINO_STRING 0
> #define ARDUINOJSON_ENABLE_STD_STRING 1
> JsonVariant value1 = myObject.get<JsonVariant>("myKey");
> JsonVariant value2 = myArray.get<JsonVariant>(0);
> ```
v5.6.7
------
* Fixed `array[idx].as<JsonVariant>()` and `object[key].as<JsonVariant>()`
* Fixed return value of `JsonObject::set()` (issue #350)
* Fixed undefined behavior in `Prettyfier` and `Print` (issue #354)
* Fixed parser that incorrectly rejected floats containing a `+` (issue #349)
v5.6.6
------
* Fixed `-Wparentheses` warning introduced in v5.6.5 (PR #335 by @nuket)
* Added `.mbedignore` for ARM mbdeb (PR #334 by @nuket)
* Fixed `JsonVariant::success()` which didn't propagate `JsonArray::success()` nor `JsonObject::success()` (issue #342).
v5.6.5
------
* `as<char*>()` now returns `true` when input is `null` (issue #330)
v5.6.4
------
* Fixed error in float serialization (issue #324)
v5.6.3
------
* Improved speed of float serialization (about twice faster)
* Added `as<JsonArray>()` as a synonym for `as<JsonArray&>()`... (issue #291)
* Fixed `call of overloaded isinf(double&) is ambiguous` (issue #284)
v5.6.2
------
* Fixed build when another lib does `#undef isnan` (issue #284)
v5.6.1
------
* Added missing `#pragma once` (issue #310)
v5.6.0
------
* ArduinoJson is now a header-only library (issue #199)
v5.5.1
------
* Fixed compilation error with Intel Galileo (issue #299)
v5.5.0
------
* Added `JsonVariant::success()` (issue #279)
* Renamed `JsonVariant::invalid<T>()` to `JsonVariant::defaultValue<T>()`
v5.4.0
------
* Changed `::String` to `ArduinoJson::String` (issue #275)
* Changed `::Print` to `ArduinoJson::Print` too
v5.3.0
------
* Added custom implementation of `ftoa` (issues #266, #267, #269 and #270)
* Added `JsonVariant JsonBuffer::parse()` (issue #265)
* Fixed `unsigned long` printed as `signed long` (issue #170)
v5.2.0
------
* Added `JsonVariant::as<char*>()` as a synonym for `JsonVariant::as<const char*>()` (issue #257)
* Added example `JsonHttpClient` (issue #256)
* Added `JsonArray::copyTo()` and `JsonArray::copyFrom()` (issue #254)
* Added `RawJson()` to insert pregenerated JSON portions (issue #259)
v5.1.1
------
* Removed `String` duplication when one replaces a value in a `JsonObject` (PR #232 by @ulion)
v5.1.0
------
* Added support of `long long` (issue #171)
* Moved all build settings to `ArduinoJson/Configuration.hpp`
> ### BREAKING CHANGE :warning:
>
> If you defined `ARDUINOJSON_ENABLE_STD_STREAM`, you now need to define it to `1`.
v5.0.8
------
* Made the library compatible with [PlatformIO](http://platformio.org/) (issue #181)
* Fixed `JsonVariant::is<bool>()` that was incorrectly returning false (issue #214)
v5.0.7
------
* Made library easier to use from a CMake project: simply `add_subdirectory(ArduinoJson/src)`
* Changed `String` to be a `typedef` of `std::string` (issues #142 and #161)
> ### BREAKING CHANGES :warning:
>
> - `JsonVariant(true).as<String>()` now returns `"true"` instead of `"1"`
> - `JsonVariant(false).as<String>()` now returns `"false"` instead of `"0"`
v5.0.6
------
* Added parameter to `DynamicJsonBuffer` constructor to set initial size (issue #152)
* Fixed warning about library category in Arduino 1.6.6 (issue #147)
* Examples: Added a loop to wait for serial port to be ready (issue #156)
v5.0.5
------
* Added overload `JsonObjectSuscript::set(value, decimals)` (issue #143)
* Use `float` instead of `double` to reduce the size of `JsonVariant` (issue #134)
v5.0.4
------
* Fixed ambiguous overload with `JsonArraySubscript` and `JsonObjectSubscript` (issue #122)
v5.0.3
------
* Fixed `printTo(String)` which wrote numbers instead of strings (issue #120)
* Fixed return type of `JsonArray::is<T>()` and some others (issue #121)
v5.0.2
------
* Fixed segmentation fault in `parseObject(String)` and `parseArray(String)`, when the
`StaticJsonBuffer` is too small to hold a copy of the string
* Fixed Clang warning "register specifier is deprecated" (issue #102)
* Fixed GCC warning "declaration shadows a member" (issue #103)
* Fixed memory alignment, which made ESP8266 crash (issue #104)
* Fixed compilation on Visual Studio 2010 and 2012 (issue #107)
v5.0.1
------
* Fixed compilation with Arduino 1.0.6 (issue #99)
v5.0.0
------
* Added support of `String` class (issues #55, #56, #70, #77)
* Added `JsonBuffer::strdup()` to make a copy of a string (issues #10, #57)
* Implicitly call `strdup()` for `String` but not for `char*` (issues #84, #87)
* Added support of non standard JSON input (issue #44)
* Added support of comments in JSON input (issue #88)
* Added implicit cast between numerical types (issues #64, #69, #93)
* Added ability to read number values as string (issue #90)
* Redesigned `JsonVariant` to leverage converting constructors instead of assignment operators (issue #66)
* Switched to new the library layout (requires Arduino 1.0.6 or above)
> ### BREAKING CHANGES :warning:
>
> - `JsonObject::add()` was renamed to `set()`
> - `JsonArray::at()` and `JsonObject::at()` were renamed to `get()`
> - Number of digits of floating point value are now set with `double_with_n_digits()`
**Personal note about the `String` class**:
Support of the `String` class has been added to the library because many people use it in their programs.
However, you should not see this as an invitation to use the `String` class.
The `String` class is **bad** because it uses dynamic memory allocation.
Compared to static allocation, it compiles to a bigger, slower program, and is less predictable.
You certainly don't want that in an embedded environment!
v4.6
----
* Fixed segmentation fault in `DynamicJsonBuffer` when memory allocation fails (issue #92)
v4.5
----
* Fixed buffer overflow when input contains a backslash followed by a terminator (issue #81)
**Upgrading is recommended** since previous versions contain a potential security risk.
Special thanks to [Giancarlo Canales Barreto](https://github.com/gcanalesb) for finding this nasty bug.
v4.4
----
* Added `JsonArray::measureLength()` and `JsonObject::measureLength()` (issue #75)
v4.3
----
* Added `JsonArray::removeAt()` to remove an element of an array (issue #58)
* Fixed stack-overflow in `DynamicJsonBuffer` when parsing huge JSON files (issue #65)
* Fixed wrong return value of `parseArray()` and `parseObject()` when allocation fails (issue #68)
v4.2
----
* Switched back to old library layout (issues #39, #43 and #45)
* Removed global new operator overload (issue #40, #45 and #46)
* Added an example with EthernetServer
v4.1
----
* Added DynamicJsonBuffer (issue #19)
v4.0
----
* Unified parser and generator API (issue #23)
* Updated library layout, now requires Arduino 1.0.6 or newer
> ### BREAKING CHANGES :warning:
>
> API changed significantly since v3, see [Migrating code to the new API](https://arduinojson.org/doc/migration/).

View File

@@ -1,10 +0,0 @@
The MIT License (MIT)
---------------------
Copyright © 2014-2018 Benoit BLANCHON
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@@ -1,110 +0,0 @@
![ArduinoJson](banner.svg)
---
[![Build status](https://ci.appveyor.com/api/projects/status/m7s53wav1l0abssg/branch/master?svg=true)](https://ci.appveyor.com/project/bblanchon/arduinojson/branch/master) [![Build Status](https://travis-ci.org/bblanchon/ArduinoJson.svg?branch=master)](https://travis-ci.org/bblanchon/ArduinoJson) [![Coverage Status](https://img.shields.io/coveralls/bblanchon/ArduinoJson.svg)](https://coveralls.io/r/bblanchon/ArduinoJson?branch=master) [![Star this project](http://githubbadges.com/star.svg?user=bblanchon&repo=ArduinoJson&style=flat&color=fff&background=007ec6)](https://github.com/bblanchon/ArduinoJson)
ArduinoJson is a C++ JSON library for Arduino and IoT (Internet Of Things).
## Features
* JSON decoding (comments are supported)
* JSON encoding (with optional indentation)
* Elegant API, easy to use
* Fixed memory allocation (zero malloc)
* No data duplication (zero copy)
* Portable (written in C++98, can be used in any C++ project)
* Self-contained (no external dependency)
* Small footprint
* Input and output streams
* [100% code coverage](https://coveralls.io/github/bblanchon/ArduinoJson)
* [Header-only library](https://en.wikipedia.org/wiki/Header-only)
* [MIT License](https://en.wikipedia.org/wiki/MIT_License)
* [Comprehensive documentation](https://arduinojson.org?utm_source=github&utm_medium=readme)
## Compatibility
ArduinoJson works on the following hardware:
* <img src="https://www.arduino.cc/favicon.ico" height="16" width="16"> Arduino boards: [Uno](https://www.arduino.cc/en/Main/ArduinoBoardUno), [Due](https://www.arduino.cc/en/Main/ArduinoBoardDue), [Mini](https://www.arduino.cc/en/Main/ArduinoBoardMini), [Micro](https://www.arduino.cc/en/Main/ArduinoBoardMicro), [Yun](https://www.arduino.cc/en/Main/ArduinoBoardYun)...
* <img src="http://espressif.com/sites/all/themes/espressif/favicon.ico" height="16" width="16"> Espressif chips: [ESP8266](https://en.wikipedia.org/wiki/ESP8266), [ESP32](https://en.wikipedia.org/wiki/ESP32)
* <img src="https://www.wemos.cc/themes/martin-materialize-parallax/assets/favicon.ico" height="16" width="16"> WeMos boards: [D1](https://wiki.wemos.cc/products:d1:d1), [D1 mini](https://wiki.wemos.cc/products:d1:d1_mini), ...
* <img src="http://redbearlab.com/favicon.ico" height="16" width="16"> RedBearLab boards: [BLE Nano](http://redbearlab.com/blenano/), [BLE Mini](http://redbearlab.com/blemini/), [WiFi Micro](https://redbear.cc/product/wifi/wifi-micro.html), [LOLIN32](https://wiki.wemos.cc/products:lolin32:lolin32)...
* <img src="https://www.pjrc.com/favicon.ico" height="16" width="16"> [Teensy](https://www.pjrc.com/teensy/) boards
* <img src="https://software.intel.com/sites/all/themes/zero/favicon.ico" height="16" width="16"> Intel boards: Edison, Galileo...
* <img src="https://www-assets.particle.io/images/favicon.png" height="16" width="16"> Particle boards: [Photon](https://www.particle.io/products/hardware/photon-wifi-dev-kit), [Electron](https://www.particle.io/products/hardware/electron-cellular-dev-kit)...
* <img src="http://www.ti.com/favicon.ico" height="16" width="16"> Texas Instruments boards: [MSP430](http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview/overview.html)...
ArduinoJson compiles with zero warning on the following compilers, IDEs, and platforms:
* <img src="https://www.arduino.cc/favicon.ico" height="16" width="16"> [Arduino IDE](https://www.arduino.cc/en/Main/Software)
* <img src="http://cdn.platformio.org/favicon.ico" height="16" width="16"> [PlatformIO](http://platformio.org/)
* <img src="http://energia.nu/img/favicon.ico" height="16" width="16"> [Energia](http://energia.nu/)
* <img src="http://www.visualmicro.com/pics/arduino-visual-studio-ld.png" height="16" width="16"> [Visual Micro](http://www.visualmicro.com/)
* <img src="http://www.atmel.com/Images/favicon.ico" height="16" width="16"> [Atmel Studio](http://www.atmel.com/microsite/atmel-studio/)
* <img src="https://www.iar.com/favicon.ico" height="16" width="16"> [IAR Embedded Workbench](https://www.iar.com/iar-embedded-workbench/)
* <img src="http://www.st.com/etc/clientlibs/st-site/media/app/images/favicon.png" height="16" width="16"> [Atollic TrueSTUDIO](https://atollic.com/truestudio/)
* <img src="http://www.keil.com/favicon.ico" height="16" width="16"> [Keil uVision](http://www.keil.com/)
* <img src="http://www.microchip.com/favicon.ico" height="16" width="16"> [MPLAB X IDE](http://www.microchip.com/mplab/mplab-x-ide)
* <img src="https://gcc.gnu.org/favicon.ico" height="16" width="16"> [GCC](https://gcc.gnu.org/)
* <img src="https://clang.llvm.org/favicon.ico" height="16" width="16"> [Clang](https://clang.llvm.org/)
* <img src="https://www.visualstudio.com/favicon.ico" height="16" width="16"> [Visual Studio](https://www.visualstudio.com/)
## Quickstart
### Deserialization
Here is a program that parses a JSON document with ArduinoJson.
```c++
char json[] = "{\"sensor\":\"gps\",\"time\":1351824120,\"data\":[48.756080,2.302038]}";
StaticJsonBuffer<200> jsonBuffer;
JsonObject& root = jsonBuffer.parseObject(json);
const char* sensor = root["sensor"];
long time = root["time"];
double latitude = root["data"][0];
double longitude = root["data"][1];
```
See the [tutorial on arduinojson.org](https://arduinojson.org/doc/decoding/?utm_source=github&utm_medium=readme)
### Serialization
Here is a program that generates a JSON document with ArduinoJson:
```c++
StaticJsonBuffer<200> jsonBuffer;
JsonObject& root = jsonBuffer.createObject();
root["sensor"] = "gps";
root["time"] = 1351824120;
JsonArray& data = root.createNestedArray("data");
data.add(48.756080);
data.add(2.302038);
root.printTo(Serial);
// This prints:
// {"sensor":"gps","time":1351824120,"data":[48.756080,2.302038]}
```
See the [tutorial on arduinojson.org](https://arduinojson.org/doc/encoding/?utm_source=github&utm_medium=readme)
## Documentation
The documentation is available on [arduinojson.org](https://arduinojson.org/?utm_source=github&utm_medium=readme), here are some shortcuts:
* The [Examples](https://arduinojson.org/example/?utm_source=github&utm_medium=readme) show how to use the library in various situations.
* The [API Reference](https://arduinojson.org/api/?utm_source=github&utm_medium=readme) contains the description of each class and function.
* The [FAQ](https://arduinojson.org/faq/?utm_source=github&utm_medium=readme) has the answer to virtually every question.
* The [ArduinoJson Assistant](https://arduinojson.org/assistant/?utm_source=github&utm_medium=readme) writes programs for you!
---
Do you like this library? Please [star this project on GitHub](https://github.com/bblanchon/ArduinoJson/stargazers)!
What? You don't like it but you *love* it?
We don't take donations anymore, but [we sell a book](https://arduinojson.org/book/?utm_source=github&utm_medium=readme), so you can help and learn at the same time!

View File

@@ -1,144 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
//
// This example shows how to store your project configuration in a file.
// It uses the SD library but can be easily modified for any other file-system.
//
// The file contains a JSON document with the following content:
// {
// "hostname": "examples.com",
// "port": 2731
// }
#include <ArduinoJson.h>
#include <SD.h>
#include <SPI.h>
// Configuration that we'll store on disk
struct Config {
char hostname[64];
int port;
};
const char *filename = "/config.txt"; // <- SD library uses 8.3 filenames
Config config; // <- global configuration object
// Loads the configuration from a file
void loadConfiguration(const char *filename, Config &config) {
// Open file for reading
File file = SD.open(filename);
// Allocate the memory pool on the stack.
// Don't forget to change the capacity to match your JSON document.
// Use arduinojson.org/assistant to compute the capacity.
StaticJsonBuffer<512> jsonBuffer;
// Parse the root object
JsonObject &root = jsonBuffer.parseObject(file);
if (!root.success())
Serial.println(F("Failed to read file, using default configuration"));
// Copy values from the JsonObject to the Config
config.port = root["port"] | 2731;
strlcpy(config.hostname, // <- destination
root["hostname"] | "example.com", // <- source
sizeof(config.hostname)); // <- destination's capacity
// Close the file (File's destructor doesn't close the file)
file.close();
}
// Saves the configuration to a file
void saveConfiguration(const char *filename, const Config &config) {
// Delete existing file, otherwise the configuration is appended to the file
SD.remove(filename);
// Open file for writing
File file = SD.open(filename, FILE_WRITE);
if (!file) {
Serial.println(F("Failed to create file"));
return;
}
// Allocate the memory pool on the stack
// Don't forget to change the capacity to match your JSON document.
// Use https://arduinojson.org/assistant/ to compute the capacity.
StaticJsonBuffer<256> jsonBuffer;
// Parse the root object
JsonObject &root = jsonBuffer.createObject();
// Set the values
root["hostname"] = config.hostname;
root["port"] = config.port;
// Serialize JSON to file
if (root.printTo(file) == 0) {
Serial.println(F("Failed to write to file"));
}
// Close the file (File's destructor doesn't close the file)
file.close();
}
// Prints the content of a file to the Serial
void printFile(const char *filename) {
// Open file for reading
File file = SD.open(filename);
if (!file) {
Serial.println(F("Failed to read file"));
return;
}
// Extract each characters by one by one
while (file.available()) {
Serial.print((char)file.read());
}
Serial.println();
// Close the file (File's destructor doesn't close the file)
file.close();
}
void setup() {
// Initialize serial port
Serial.begin(9600);
while (!Serial) continue;
// Initialize SD library
while (!SD.begin()) {
Serial.println(F("Failed to initialize SD library"));
delay(1000);
}
// Should load default config if run for the first time
Serial.println(F("Loading configuration..."));
loadConfiguration(filename, config);
// Create configuration file
Serial.println(F("Saving configuration..."));
saveConfiguration(filename, config);
// Dump config file
Serial.println(F("Print config file..."));
printFile(filename);
}
void loop() {
// not used in this example
}
// See also
// --------
//
// https://arduinojson.org/ contains the documentation for all the functions
// used above. It also includes an FAQ that will help you solve any
// serialization or deserialization problem.
//
// The book "Mastering ArduinoJson" contains a case study of a project that has
// a complex configuration with nested members.
// Contrary to this example, the project in the book uses the SPIFFS filesystem.
// Learn more at https://arduinojson.org/book/
// Use the coupon code TWENTY for a 20% discount ❤❤❤❤❤

View File

@@ -1,81 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
//
// This example shows how to generate a JSON document with ArduinoJson.
#include <ArduinoJson.h>
void setup() {
// Initialize Serial port
Serial.begin(9600);
while (!Serial) continue;
// Memory pool for JSON object tree.
//
// Inside the brackets, 200 is the size of the pool in bytes.
// Don't forget to change this value to match your JSON document.
// Use arduinojson.org/assistant to compute the capacity.
StaticJsonBuffer<200> jsonBuffer;
// StaticJsonBuffer allocates memory on the stack, it can be
// replaced by DynamicJsonBuffer which allocates in the heap.
//
// DynamicJsonBuffer jsonBuffer(200);
// Create the root of the object tree.
//
// It's a reference to the JsonObject, the actual bytes are inside the
// JsonBuffer with all the other nodes of the object tree.
// Memory is freed when jsonBuffer goes out of scope.
JsonObject& root = jsonBuffer.createObject();
// Add values in the object
//
// Most of the time, you can rely on the implicit casts.
// In other case, you can do root.set<long>("time", 1351824120);
root["sensor"] = "gps";
root["time"] = 1351824120;
// Add a nested array.
//
// It's also possible to create the array separately and add it to the
// JsonObject but it's less efficient.
JsonArray& data = root.createNestedArray("data");
data.add(48.756080);
data.add(2.302038);
root.printTo(Serial);
// This prints:
// {"sensor":"gps","time":1351824120,"data":[48.756080,2.302038]}
Serial.println();
root.prettyPrintTo(Serial);
// This prints:
// {
// "sensor": "gps",
// "time": 1351824120,
// "data": [
// 48.756080,
// 2.302038
// ]
// }
}
void loop() {
// not used in this example
}
// See also
// --------
//
// https://arduinojson.org/ contains the documentation for all the functions
// used above. It also includes an FAQ that will help you solve any
// serialization problem.
//
// The book "Mastering ArduinoJson" contains a tutorial on serialization.
// It begins with a simple example, like the one above, and then adds more
// features like serializing directly to a file or an HTTP request.
// Learn more at https://arduinojson.org/book/
// Use the coupon code TWENTY for a 20% discount ❤❤❤❤❤

View File

@@ -1,112 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
//
// This example shows how to parse a JSON document in an HTTP response.
// It uses the Ethernet library, but can be easily adapted for Wifi.
//
// It performs a GET resquest on arduinojson.org/example.json
// Here is the expected response:
// {
// "sensor": "gps",
// "time": 1351824120,
// "data": [
// 48.756080,
// 2.302038
// ]
// }
#include <ArduinoJson.h>
#include <Ethernet.h>
#include <SPI.h>
void setup() {
// Initialize Serial port
Serial.begin(9600);
while (!Serial) continue;
// Initialize Ethernet library
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
if (!Ethernet.begin(mac)) {
Serial.println(F("Failed to configure Ethernet"));
return;
}
delay(1000);
Serial.println(F("Connecting..."));
// Connect to HTTP server
EthernetClient client;
client.setTimeout(10000);
if (!client.connect("arduinojson.org", 80)) {
Serial.println(F("Connection failed"));
return;
}
Serial.println(F("Connected!"));
// Send HTTP request
client.println(F("GET /example.json HTTP/1.0"));
client.println(F("Host: arduinojson.org"));
client.println(F("Connection: close"));
if (client.println() == 0) {
Serial.println(F("Failed to send request"));
return;
}
// Check HTTP status
char status[32] = {0};
client.readBytesUntil('\r', status, sizeof(status));
if (strcmp(status, "HTTP/1.1 200 OK") != 0) {
Serial.print(F("Unexpected response: "));
Serial.println(status);
return;
}
// Skip HTTP headers
char endOfHeaders[] = "\r\n\r\n";
if (!client.find(endOfHeaders)) {
Serial.println(F("Invalid response"));
return;
}
// Allocate JsonBuffer
// Use arduinojson.org/assistant to compute the capacity.
const size_t capacity = JSON_OBJECT_SIZE(3) + JSON_ARRAY_SIZE(2) + 60;
DynamicJsonBuffer jsonBuffer(capacity);
// Parse JSON object
JsonObject& root = jsonBuffer.parseObject(client);
if (!root.success()) {
Serial.println(F("Parsing failed!"));
return;
}
// Extract values
Serial.println(F("Response:"));
Serial.println(root["sensor"].as<char*>());
Serial.println(root["time"].as<char*>());
Serial.println(root["data"][0].as<char*>());
Serial.println(root["data"][1].as<char*>());
// Disconnect
client.stop();
}
void loop() {
// not used in this example
}
// See also
// --------
//
// https://arduinojson.org/ contains the documentation for all the functions
// used above. It also includes an FAQ that will help you solve any
// serialization problem.
//
// The book "Mastering ArduinoJson" contains a tutorial on deserialization
// showing how to parse the response from Yahoo Weather. In the last chapter,
// it shows how to parse the huge documents from OpenWeatherMap
// and Weather Underground.
// Learn more at https://arduinojson.org/book/
// Use the coupon code TWENTY for a 20% discount ❤❤❤❤❤

View File

@@ -1,78 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
//
// This example shows how to deserialize a JSON document with ArduinoJson.
#include <ArduinoJson.h>
void setup() {
// Initialize serial port
Serial.begin(9600);
while (!Serial) continue;
// Memory pool for JSON object tree.
//
// Inside the brackets, 200 is the size of the pool in bytes.
// Don't forget to change this value to match your JSON document.
// Use arduinojson.org/assistant to compute the capacity.
StaticJsonBuffer<200> jsonBuffer;
// StaticJsonBuffer allocates memory on the stack, it can be
// replaced by DynamicJsonBuffer which allocates in the heap.
//
// DynamicJsonBuffer jsonBuffer(200);
// JSON input string.
//
// It's better to use a char[] as shown here.
// If you use a const char* or a String, ArduinoJson will
// have to make a copy of the input in the JsonBuffer.
char json[] =
"{\"sensor\":\"gps\",\"time\":1351824120,\"data\":[48.756080,2.302038]}";
// Root of the object tree.
//
// It's a reference to the JsonObject, the actual bytes are inside the
// JsonBuffer with all the other nodes of the object tree.
// Memory is freed when jsonBuffer goes out of scope.
JsonObject& root = jsonBuffer.parseObject(json);
// Test if parsing succeeds.
if (!root.success()) {
Serial.println("parseObject() failed");
return;
}
// Fetch values.
//
// Most of the time, you can rely on the implicit casts.
// In other case, you can do root["time"].as<long>();
const char* sensor = root["sensor"];
long time = root["time"];
double latitude = root["data"][0];
double longitude = root["data"][1];
// Print values.
Serial.println(sensor);
Serial.println(time);
Serial.println(latitude, 6);
Serial.println(longitude, 6);
}
void loop() {
// not used in this example
}
// See also
// --------
//
// https://arduinojson.org/ contains the documentation for all the functions
// used above. It also includes an FAQ that will help you solve any
// deserialization problem.
//
// The book "Mastering ArduinoJson" contains a tutorial on deserialization.
// It begins with a simple example, like the one above, and then adds more
// features like deserializing directly from a file or an HTTP request.
// Learn more at https://arduinojson.org/book/
// Use the coupon code TWENTY for a 20% discount ❤❤❤❤❤

View File

@@ -1,109 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
//
// This example shows how to implement an HTTP server that sends JSON document
// in the responses.
// It uses the Ethernet library but can be easily adapted for Wifi.
//
// It sends the value of the analog and digital pins.
// The JSON document looks like the following:
// {
// "analog": [ 0, 1, 2, 3, 4, 5 ],
// "digital": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]
// }
#include <ArduinoJson.h>
#include <Ethernet.h>
#include <SPI.h>
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
EthernetServer server(80);
void setup() {
// Initialize serial port
Serial.begin(9600);
while (!Serial) continue;
// Initialize Ethernet libary
if (!Ethernet.begin(mac)) {
Serial.println(F("Failed to initialize Ethernet library"));
return;
}
// Start to listen
server.begin();
Serial.println(F("Server is ready."));
Serial.print(F("Please connect to http://"));
Serial.println(Ethernet.localIP());
}
void loop() {
// Wait for an incomming connection
EthernetClient client = server.available();
// Do we have a client?
if (!client) return;
Serial.println(F("New client"));
// Read the request (we ignore the content in this example)
while (client.available()) client.read();
// Allocate JsonBuffer
// Use arduinojson.org/assistant to compute the capacity.
StaticJsonBuffer<500> jsonBuffer;
// Create the root object
JsonObject& root = jsonBuffer.createObject();
// Create the "analog" array
JsonArray& analogValues = root.createNestedArray("analog");
for (int pin = 0; pin < 6; pin++) {
// Read the analog input
int value = analogRead(pin);
// Add the value at the end of the array
analogValues.add(value);
}
// Create the "digital" array
JsonArray& digitalValues = root.createNestedArray("digital");
for (int pin = 0; pin < 14; pin++) {
// Read the digital input
int value = digitalRead(pin);
// Add the value at the end of the array
digitalValues.add(value);
}
Serial.print(F("Sending: "));
root.printTo(Serial);
Serial.println();
// Write response headers
client.println("HTTP/1.0 200 OK");
client.println("Content-Type: application/json");
client.println("Connection: close");
client.println();
// Write JSON document
root.prettyPrintTo(client);
// Disconnect
client.stop();
}
// See also
// --------
//
// https://arduinojson.org/ contains the documentation for all the functions
// used above. It also includes an FAQ that will help you solve any
// serialization problem.
//
// The book "Mastering ArduinoJson" contains a tutorial on serialization.
// It begins with a simple example, then adds more features like serializing
// directly to a file or an HTTP client.
// Learn more at https://arduinojson.org/book/
// Use the coupon code TWENTY for a 20% discount ❤❤❤❤❤

View File

@@ -1,101 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
//
// This example shows how to send a JSON document to a UDP socket.
// At regular interval, it sends a UDP packet that contains the status of
// analog and digital pins.
// The JSON document looks like the following:
// {
// "analog": [ 0, 1, 2, 3, 4, 5 ],
// "digital": [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]
// }
//
// If you want to test this program, you need to be able to receive the UDP
// packets.
// For example, you can run netcat on your computer
// $ ncat -ulp 8888
// See https://nmap.org/ncat/
#include <ArduinoJson.h>
#include <Ethernet.h>
#include <SPI.h>
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
IPAddress remoteIp(192, 168, 0, 108); // <- EDIT!!!!
unsigned short remotePort = 8888;
unsigned short localPort = 8888;
EthernetUDP udp;
void setup() {
// Initialize serial port
Serial.begin(9600);
while (!Serial) continue;
// Initialize Ethernet libary
if (!Ethernet.begin(mac)) {
Serial.println(F("Failed to initialize Ethernet library"));
return;
}
// Enable UDP
udp.begin(localPort);
}
void loop() {
// Allocate JsonBuffer
// Use arduinojson.org/assistant to compute the capacity.
StaticJsonBuffer<500> jsonBuffer;
// Create the root object
JsonObject& root = jsonBuffer.createObject();
// Create the "analog" array
JsonArray& analogValues = root.createNestedArray("analog");
for (int pin = 0; pin < 6; pin++) {
// Read the analog input
int value = analogRead(pin);
// Add the value at the end of the array
analogValues.add(value);
}
// Create the "digital" array
JsonArray& digitalValues = root.createNestedArray("digital");
for (int pin = 0; pin < 14; pin++) {
// Read the digital input
int value = digitalRead(pin);
// Add the value at the end of the array
digitalValues.add(value);
}
// Log
Serial.print(F("Sending to "));
Serial.print(remoteIp);
Serial.print(F(" on port "));
Serial.println(remotePort);
root.printTo(Serial);
// Send UDP packet
udp.beginPacket(remoteIp, remotePort);
root.printTo(udp);
udp.println();
udp.endPacket();
// Wait
delay(10000);
}
// See also
// --------
//
// https://arduinojson.org/ contains the documentation for all the functions
// used above. It also includes an FAQ that will help you solve any
// serialization problem.
//
// The book "Mastering ArduinoJson" contains a tutorial on serialization.
// It begins with a simple example, then adds more features like serializing
// directly to a file or any stream.
// Learn more at https://arduinojson.org/book/
// Use the coupon code TWENTY for a 20% discount ❤❤❤❤❤

View File

@@ -1,70 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
//
// This example shows the different ways you can use Flash strings with
// ArduinoJson.
//
// Use Flash strings sparingly, because ArduinoJson duplicates them in the
// JsonBuffer. Prefer plain old char*, as they are more efficient in term of
// code size, speed, and memory usage.
#include <ArduinoJson.h>
void setup() {
#ifdef PROGMEM // <- check that Flash strings are supported
DynamicJsonBuffer jsonBuffer;
// You can use a Flash String as your JSON input.
// WARNING: the content of the Flash String will be duplicated in the
// JsonBuffer.
JsonObject& root =
jsonBuffer.parseObject(F("{\"sensor\":\"gps\",\"time\":1351824120,"
"\"data\":[48.756080,2.302038]}"));
// You can use a Flash String to get an element of a JsonObject
// No duplication is done.
long time = root[F("time")];
// You can use a Flash String to set an element of a JsonObject
// WARNING: the content of the Flash String will be duplicated in the
// JsonBuffer.
root[F("time")] = time;
// You can set a Flash String to a JsonObject or JsonArray:
// WARNING: the content of the Flash String will be duplicated in the
// JsonBuffer.
root["sensor"] = F("gps");
// It works with RawJson too:
root["sensor"] = RawJson(F("\"gps\""));
// You can compare the content of a JsonVariant to a Flash String
if (root["sensor"] == F("gps")) {
// ...
}
#else
#warning PROGMEM is not supported on this platform
#endif
}
void loop() {
// not used in this example
}
// See also
// --------
//
// https://arduinojson.org/ contains the documentation for all the functions
// used above. It also includes an FAQ that will help you solve any memory
// problem.
//
// The book "Mastering ArduinoJson" contains a quick C++ course that explains
// how your microcontroller stores strings in memory. It also tells why you
// should not abuse Flash strings with ArduinoJson.
// Learn more at https://arduinojson.org/book/
// Use the coupon code TWENTY for a 20% discount ❤❤❤❤❤

View File

@@ -1,74 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
//
// This example shows the different ways you can use String with ArduinoJson.
//
// Use String objects sparingly, because ArduinoJson duplicates them in the
// JsonBuffer. Prefer plain old char[], as they are more efficient in term of
// code size, speed, and memory usage.
#include <ArduinoJson.h>
void setup() {
DynamicJsonBuffer jsonBuffer;
// You can use a String as your JSON input.
// WARNING: the content of the String will be duplicated in the JsonBuffer.
String input =
"{\"sensor\":\"gps\",\"time\":1351824120,\"data\":[48.756080,2.302038]}";
JsonObject& root = jsonBuffer.parseObject(input);
// You can use a String to get an element of a JsonObject
// No duplication is done.
long time = root[String("time")];
// You can use a String to set an element of a JsonObject
// WARNING: the content of the String will be duplicated in the JsonBuffer.
root[String("time")] = time;
// You can get a String from a JsonObject or JsonArray:
// No duplication is done, at least not in the JsonBuffer.
String sensor = root["sensor"];
// Unfortunately, the following doesn't work (issue #118):
// sensor = root["sensor"]; // <- error "ambiguous overload for 'operator='"
// As a workaround, you need to replace by:
sensor = root["sensor"].as<String>();
// You can set a String to a JsonObject or JsonArray:
// WARNING: the content of the String will be duplicated in the JsonBuffer.
root["sensor"] = sensor;
// It works with RawJson too:
root["sensor"] = RawJson(sensor);
// You can also concatenate strings
// WARNING: the content of the String will be duplicated in the JsonBuffer.
root[String("sen") + "sor"] = String("gp") + "s";
// You can compare the content of a JsonObject with a String
if (root["sensor"] == sensor) {
// ...
}
// Lastly, you can print the resulting JSON to a String
String output;
root.printTo(output);
}
void loop() {
// not used in this example
}
// See also
// --------
//
// https://arduinojson.org/ contains the documentation for all the functions
// used above. It also includes an FAQ that will help you solve any problem.
//
// The book "Mastering ArduinoJson" contains a quick C++ course that explains
// how your microcontroller stores strings in memory. On several occasions, it
// shows how you can avoid String in your program.
// Learn more at https://arduinojson.org/book/
// Use the coupon code TWENTY for a 20% discount ❤❤❤❤❤

View File

@@ -1,15 +0,0 @@
JsonArray KEYWORD1
JsonObject KEYWORD1
JsonVariant KEYWORD1
StaticJsonBuffer KEYWORD1
DynamicJsonBuffer KEYWORD1
add KEYWORD2
createArray KEYWORD2
createNestedArray KEYWORD2
createNestedObject KEYWORD2
createObject KEYWORD2
parseArray KEYWORD2
parseObject KEYWORD2
prettyPrintTo KEYWORD2
printTo KEYWORD2
success KEYWORD2

View File

@@ -1,11 +0,0 @@
name=ArduinoJson
version=5.13.3
author=Benoit Blanchon <blog.benoitblanchon.fr>
maintainer=Benoit Blanchon <blog.benoitblanchon.fr>
sentence=An efficient and elegant JSON library for Arduino.
paragraph=ArduinoJson supports ✔ serialization, ✔ deserialization, ✔ fixed allocation, ✔ zero-copy, ✔ streams, and more. It is the most popular Arduino library on GitHub ❤❤❤❤❤. Check out arduinojson.org for a comprehensive documentation.
category=Data Processing
url=https://arduinojson.org/?utm_source=meta&utm_medium=library.properties
architectures=*
repository=https://github.com/bblanchon/ArduinoJson.git
license=MIT

View File

@@ -1,17 +0,0 @@
// ArduinoJson - arduinojson.org
// Copyright Benoit Blanchon 2014-2018
// MIT License
#pragma once
#ifdef __cplusplus
#include "ArduinoJson.hpp"
using namespace ArduinoJson;
#else
#error ArduinoJson requires a C++ compiler, please change file extension to .cc or .cpp
#endif

Some files were not shown because too many files have changed in this diff Show More