MySensors Diagnostics (#1333)

* MySensors Diagnostics

* Fix Cppcheck issues

* Fix formatting in PrintHex8 function
This commit is contained in:
Olivier
2026-02-07 15:11:27 +01:00
committed by GitHub
parent 18d07471b2
commit d6525d4c2e
15 changed files with 1181 additions and 11 deletions

View File

@@ -133,6 +133,22 @@
*/
//#define MY_SPECIAL_DEBUG
/**
* @def MY_DIAGNOSTICS
* @brief Define MY_DIAGNOSTICS to show a diagnostics serial user interface
*
*/
//#define MY_DIAGNOSTICS
/**
* @def MY_DIAGNOSTICS_CRYPTO
* @brief Define MY_DIAGNOSTICS_CRYPTO to include crypto testing functions.
*
* This feature is disabled on AVR architectures due to limited flash/RAM space but can be enabled if needed.
*
*/
//#define MY_DIAGNOSTICS
/**
* @def MY_DISABLED_SERIAL
* @brief Define MY_DISABLED_SERIAL if you want to use the UART TX/RX pins as normal I/O pins.
@@ -2633,6 +2649,8 @@
#define MY_SPECIAL_DEBUG
#define MY_DISABLED_SERIAL
#define MY_SPLASH_SCREEN_DISABLED
#define MY_DIAGNOSTICS
#define MY_DIAGNOSTICS_CRYPTO
// linux
#define MY_LINUX_SERIAL_PORT
#define MY_LINUX_SERIAL_IS_PTY

View File

@@ -40,9 +40,19 @@
#endif
#include <stdint.h>
#if defined(MY_DIAGNOSTICS)
#if !defined(ARDUINO_ARCH_AVR)
// more flash available
#define MY_DIAGNOSTICS_CRYPTO
#endif
#define MY_DEBUG_VERBOSE_TRANSPORT
#define MY_DEBUG_VERBOSE_TRANSPORT_HAL
#define MY_SPECIAL_DEBUG
#include "core/MyDiagnostics.h"
#endif
#include "MyConfig.h"
#include "core/MyHelperFunctions.cpp"
#include "core/MySplashScreen.h"
#include "core/MySensorsCore.h"
@@ -457,6 +467,10 @@ MY_DEFAULT_RX_LED_PIN in your sketch instead to enable LEDs
#include "core/MySplashScreen.cpp"
#include "core/MySensorsCore.cpp"
#if defined(MY_DIAGNOSTICS)
#include "core/MyDiagnostics.cpp"
#endif
// HW mains
#if defined(ARDUINO_ARCH_AVR)
#include "hal/architecture/AVR/MyMainAVR.cpp"

958
core/MyDiagnostics.cpp Normal file
View File

@@ -0,0 +1,958 @@
/*
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in RAM or EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
* Copyright (C) 2013-2026 Sensnology AB
* Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*/
#include "MyDiagnostics.h"
static char inputBuffer[15];
static char inputCmd;
static uint8_t inputBufferPosition;
static String inputParameter;
void diagnosticsFlushSerial(void)
{
delay(100);
while (MY_SERIALDEVICE.available()) {
(void)MY_SERIALDEVICE.read();
}
}
void diagnosticsSerialInput(void)
{
bool cmdReceived = false;
inputBufferPosition = 0;
while (!cmdReceived) {
if (MY_SERIALDEVICE.available()) {
const char inputChr = MY_SERIALDEVICE.read();
if (inputChr == '\n' || inputBufferPosition == sizeof(inputBuffer) - 1) {
cmdReceived = true;
} else {
inputBuffer[inputBufferPosition++] = inputChr;
}
}
}
diagnosticsFlushSerial();
// null termination
inputBuffer[inputBufferPosition] = 0;
inputParameter = String(&inputBuffer[1]);
inputCmd = toUpperCase(inputBuffer[0]);
}
void PRINT(const char *fmt, ...)
{
char fmtBuffer[MY_SERIAL_OUTPUT_SIZE];
va_list args;
va_start(args, fmt);
vsnprintf_P(fmtBuffer, sizeof(fmtBuffer), fmt, args);
va_end(args);
MY_SERIALDEVICE.print(fmtBuffer);
}
void PrintHex8(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0; i < length; ++i) {
PRINT(PSTR("%02" PRIX8 " "), data[i]);
if ( ((i + 1u) % 16u == 0u) || (i + 1u == length) ) {
MY_SERIALDEVICE.println();
}
}
}
void diagnosticsPrintSeparationLine(void)
{
for (uint8_t i = 0; i < 50; i++) {
MY_SERIALDEVICE.print("=");
}
MY_SERIALDEVICE.println();
}
void diagnosticsMySensorsEEPROMDump(void)
{
uint8_t buffer[256];
PRINT(PSTR("> MYS E2P START: 0x%04" PRIX16 "\n"), EEPROM_START);
MY_SERIALDEVICE.print(F("> NODE_ID="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_NODE_ID_ADDRESS), SIZE_NODE_ID);
PrintHex8(buffer, SIZE_NODE_ID);
MY_SERIALDEVICE.print(F("> PAR_ID="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_PARENT_NODE_ID_ADDRESS),
SIZE_PARENT_NODE_ID);
PrintHex8(buffer, SIZE_PARENT_NODE_ID);
MY_SERIALDEVICE.print(F("> D_GW="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_DISTANCE_ADDRESS), SIZE_DISTANCE);
PrintHex8(buffer, SIZE_DISTANCE);
MY_SERIALDEVICE.println(F("> RTE TABLE:"));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_ROUTES_ADDRESS), SIZE_ROUTES);
PrintHex8(buffer, SIZE_ROUTES);
MY_SERIALDEVICE.println(F("> CTRL_CFG:"));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_CONTROLLER_CONFIG_ADDRESS),
SIZE_CONTROLLER_CONFIG);
PrintHex8(buffer, SIZE_CONTROLLER_CONFIG);
MY_SERIALDEVICE.print(F("> PERS_CRC="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_PERSONALIZATION_CHECKSUM_ADDRESS),
SIZE_PERSONALIZATION_CHECKSUM);
PrintHex8(buffer, SIZE_PERSONALIZATION_CHECKSUM);
MY_SERIALDEVICE.print(F("> FW_TYPE="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_FIRMWARE_TYPE_ADDRESS),
SIZE_PERSONALIZATION_CHECKSUM);
PrintHex8(buffer, SIZE_PERSONALIZATION_CHECKSUM);
MY_SERIALDEVICE.print(F("> FW_VERS="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_FIRMWARE_VERSION_ADDRESS),
SIZE_FIRMWARE_VERSION);
PrintHex8(buffer, SIZE_FIRMWARE_VERSION);
MY_SERIALDEVICE.print(F("> FW_BLOCKS="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_FIRMWARE_BLOCKS_ADDRESS),
SIZE_FIRMWARE_BLOCKS);
PrintHex8(buffer, SIZE_FIRMWARE_BLOCKS);
MY_SERIALDEVICE.print(F("> FW_CRC="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_FIRMWARE_CRC_ADDRESS), SIZE_FIRMWARE_CRC);
PrintHex8(buffer, SIZE_FIRMWARE_CRC);
MY_SERIALDEVICE.println(F("> SGN_REQ_TABLE:"));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_SIGNING_REQUIREMENT_TABLE_ADDRESS),
SIZE_SIGNING_REQUIREMENT_TABLE);
PrintHex8(buffer, SIZE_SIGNING_REQUIREMENT_TABLE);
MY_SERIALDEVICE.println(F("> WL_REQ_TABLE:"));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_WHITELIST_REQUIREMENT_TABLE_ADDRESS),
SIZE_WHITELIST_REQUIREMENT_TABLE);
PrintHex8(buffer, SIZE_WHITELIST_REQUIREMENT_TABLE);
MY_SERIALDEVICE.println(F("> SGN_SOFT_KEY:"));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_SIGNING_SOFT_HMAC_KEY_ADDRESS),
SIZE_SIGNING_SOFT_HMAC_KEY);
PrintHex8(buffer, SIZE_SIGNING_SOFT_HMAC_KEY);
MY_SERIALDEVICE.println(F("> SGN_SOFT_SER:"));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_SIGNING_SOFT_SERIAL_ADDRESS),
SIZE_SIGNING_SOFT_SERIAL);
PrintHex8(buffer, SIZE_SIGNING_SOFT_SERIAL);
MY_SERIALDEVICE.println(F("> AES_KEY:"));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS),
SIZE_RF_ENCRYPTION_AES_KEY);
PrintHex8(buffer, SIZE_RF_ENCRYPTION_AES_KEY);
MY_SERIALDEVICE.print(F("> NL_CNT="));
hwReadConfigBlock(buffer, reinterpret_cast<void *>(EEPROM_NODE_LOCK_COUNTER_ADDRESS),
SIZE_NODE_LOCK_COUNTER);
PrintHex8(buffer, SIZE_NODE_LOCK_COUNTER);
PRINT(PSTR("> USER E2P >= 0x%04" PRIX16 "\n"), EEPROM_LOCAL_CONFIG_ADDRESS);
}
void diagnosticsClearMySensorsEEPROMConfig(void)
{
for (uint16_t i = EEPROM_START; i < EEPROM_START + EEPROM_LOCAL_CONFIG_ADDRESS; i++) {
hwWriteConfig(i, 0xFF);
if (hwReadConfig(i) != 0xFF) {
PRINT(PSTR("!ERR POS 0x02%" PRIX8 "\n"), i);
}
}
MY_SERIALDEVICE.println(F("> E2P CLR"));
}
void diagnosticsClearMySensorsRoutingTable(void)
{
for (uint16_t i = 0; i < SIZE_ROUTES; i++) {
hwWriteConfig(EEPROM_ROUTES_ADDRESS + i, 0xFF);
if (hwReadConfig(EEPROM_ROUTES_ADDRESS + i) != 0xFF) {
PRINT(PSTR("!ERR POS 0x02%" PRIu8 "\n"), i);
}
}
MY_SERIALDEVICE.println(F("> RTE TABLE CLR"));
}
void diagnosticsClearMySensorsTransportSettings(void)
{
hwWriteConfig(EEPROM_NODE_ID_ADDRESS, 0xFF);
hwWriteConfig(EEPROM_PARENT_NODE_ID_ADDRESS, 0xFF);
hwWriteConfig(EEPROM_DISTANCE_ADDRESS, 0xFF);
MY_SERIALDEVICE.println(F("> TSP CFG CLR"));
}
void diagnosticsEEPROMTest(void)
{
MY_SERIALDEVICE.println(F("EEPROM test:"));
uint16_t success = 0;
for (uint16_t i = 0; i < (EEPROM_LOCAL_CONFIG_ADDRESS - EEPROM_START); i++) {
if (i % 80 == 0) {
MY_SERIALDEVICE.println();
MY_SERIALDEVICE.print(i + EEPROM_START, HEX);
MY_SERIALDEVICE.print(": ");
} else {
MY_SERIALDEVICE.print(".");
}
const uint8_t originalContent = hwReadConfig(i + EEPROM_START);
hwWriteConfig(i + EEPROM_START, 0xAA);
if (hwReadConfig(i + EEPROM_START) == 0xAA) {
success++;
} else {
PRINT(PSTR("!ERR POS 0x02%" PRIu8 "\n"), i + EEPROM_START);
}
hwWriteConfig(i + EEPROM_START, 0x55);
if (hwReadConfig(i + EEPROM_START) == 0x55) {
success++;
}
// write back original byte
hwWriteConfig(i + EEPROM_START, originalContent);
if (hwReadConfig(i + EEPROM_START) == originalContent) {
success++;
} else {
PRINT(PSTR("!ERR POS 0x02%" PRIu8 "\n"), i + EEPROM_START);
}
}
MY_SERIALDEVICE.print(F("\n>E2P check: "));
if (success == (EEPROM_LOCAL_CONFIG_ADDRESS - EEPROM_START) * 3) {
MY_SERIALDEVICE.println(F("pass"));
} else {
MY_SERIALDEVICE.println(F("failed!"));
}
}
void diagnosticsEEPROMMenu(void)
{
while (true) {
diagnosticsPrintSeparationLine();
MY_SERIALDEVICE.println(F("EEPROM:\n\n"
"[D] Dump\n"
"[T] Test\n"
"[C] CLR\n"
"[R] CLR TSP RTE\n"
"[S] CLR TSP CFG\n"
"[X] Exit"
));
diagnosticsPrintSeparationLine();
diagnosticsFlushSerial();
diagnosticsSerialInput();
if (inputCmd == 'D') {
diagnosticsMySensorsEEPROMDump();
} else if (inputCmd == 'T') {
diagnosticsEEPROMTest();
} else if (inputCmd == 'C') {
diagnosticsClearMySensorsEEPROMConfig();
} else if (inputCmd== 'R') {
diagnosticsClearMySensorsRoutingTable();
} else if (inputCmd == 'S') {
diagnosticsClearMySensorsTransportSettings();
} else if (inputCmd == 'X') {
return;
}
}
}
#if defined(MY_DIAGNOSTICS_CRYPTO)
bool diagnosticsCryptoMenu(void)
{
MY_SERIALDEVICE.println(F("Testing:"));
const uint8_t test_data[64] = { 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d,
0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91, 0x76, 0x78, 0xb2,
0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22, 0x22, 0x95, 0x16,
0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75, 0x86, 0xe1, 0xa7
};
const uint8_t test_psk[16] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };
uint8_t aes_iv[16];
for (uint8_t i = 0; i < sizeof(aes_iv); i++) {
aes_iv[i] = i;
}
AES128CBCInit(test_psk);
#if defined(CRYPTO_OUTPUT)
MY_SERIALDEVICE.println(F("AES128CBC input:"));
PrintHex8(test_data, sizeof(test_data));
MY_SERIALDEVICE.println(F("AES128CBC key:"));
PrintHex8(test_psk, sizeof(test_psk));
MY_SERIALDEVICE.println(F("AES128CBC IV:"));
PrintHex8(aes_iv, sizeof(aes_iv));
#endif
uint8_t temp_iv[16];
uint8_t temp_data[64];
(void)memcpy(temp_iv, aes_iv, sizeof(aes_iv));
(void)memcpy(temp_data, test_data, sizeof(temp_data));
AES128CBCEncrypt(temp_iv, temp_data, sizeof(test_data));
MY_SERIALDEVICE.print(F("- AES128 CBC encryption: "));
const uint8_t aes_ciphertext[64] = {
0x46,0xE3,0x35,0xB8,0xEA,0x11,0xBC,0xC5,0xB4,0xEB,0x7F,0x49,0xD1,0x14,0xFF,0x43,0x28,0x22,0x15,
0xAD,0x3A,0xCF,0xF1,0x6B,0xE1,0x9B,0x6F,0x71,0x1A,0xA1,0x3B,0x89,0x69,0xFD,0x9F,0xB7,0x98,0x2A,
0x37,0x03,0xE8,0x16,0x14,0x3F,0x89,0x62,0x56,0x0F,0xDA,0x85,0xAD,0x94,0xD3,0x4E,0x54,0x18,0x2A,
0x52,0x5C,0x2B,0x28,0xFA,0x0E,0xAB
};
// result verified here: http://extranet.cryptomathic.com/aescalc/index
if (memcmp(temp_data, &aes_ciphertext, sizeof(aes_ciphertext)) == 0) {
MY_SERIALDEVICE.println(F("OK"));
} else {
MY_SERIALDEVICE.println(F("FAIL!"));
};
#if defined(CRYPTO_OUTPUT)
PrintHex8(temp_data, sizeof(test_data));
#endif
(void)memcpy(temp_iv, aes_iv, sizeof(aes_iv));
AES128CBCDecrypt(temp_iv, temp_data, sizeof(temp_data));
MY_SERIALDEVICE.print(F("- AES128 CBC decryption: "));
if (memcmp(test_data, temp_data, sizeof(temp_data)) == 0) {
MY_SERIALDEVICE.println(F("OK"));
} else {
MY_SERIALDEVICE.println(F("FAIL!"));
};
#if defined(CRYPTO_OUTPUT)
PrintHex8(temp_data, sizeof(temp_data));
#endif
MY_SERIALDEVICE.print(F("- SHA256: "));
uint8_t dest[64];
SHA256(dest, test_data, sizeof(test_data));
#if defined(CRYPTO_OUTPUT)
MY_SERIALDEVICE.println(F("SHA256 input:"));
PrintHex8(test_data, sizeof(test_data));
MY_SERIALDEVICE.println(F("SHA256 output:"));
PrintHex8(dest, 32);
#endif
// result verified here: http://extranet.cryptomathic.com/hashcalc/index
const uint8_t sha256result[32] = { 0x51,0x3f,0xa7,0x82,0x3d,0xc3,0x05,0x3d,0xc6,0x43,0xa4,0x4b,0x8f,0xb8,0xdd,0x62,
0x36,0x0b,0x00,0x44,0xf1,0xab,0x69,0x65,0xf8,0x36,0x29,0xd2,0xb1,0x64,0xbf,0x14
};
//PRINT(PSTR("SHA256 test: "));
if (memcmp(dest, &sha256result, sizeof(sha256result)) == 0) {
MY_SERIALDEVICE.println(F("OK"));
} else {
MY_SERIALDEVICE.println(F("FAIL!"));
};
MY_SERIALDEVICE.print(F("- HMAC SHA256: "));
#if defined(CRYPTO_OUTPUT)
MY_SERIALDEVICE.println(F("HMAC input:"));
PrintHex8(test_data, sizeof(test_data));
MY_SERIALDEVICE.println(F("HMAC key:"));
PrintHex8(test_psk, sizeof(test_psk));
#endif
SHA256HMAC(dest, test_psk, sizeof(test_psk), test_data, sizeof(test_data));
#if defined(CRYPTO_OUTPUT)
MY_SERIALDEVICE.println(F("HMAC output:"));
PrintHex8(dest, sizeof(dest));
#endif
// result verified here: http://extranet.cryptomathic.com/hmaccalc/index
const uint8_t hmacresult[32] = { 0xcc,0xa7,0x5f,0x5d,0xd5,0xeb,0x50,0x34,0x02,0x53,0x12,0x17,0x40,0x72,0xaf,0x29,
0xe6,0xc9,0xb5,0xb1,0x9b,0x26,0x8b,0x23,0x0f,0x5c,0xeb,0x50,0x24,0x63,0xc2,0x33
};
//PRINT(PSTR("HMAC test: "));
if (memcmp(dest, &hmacresult, sizeof(sha256result)) == 0) {
MY_SERIALDEVICE.println(F("OK"));
} else {
MY_SERIALDEVICE.println(F("FAIL!"));
};
MY_SERIALDEVICE.println(F("> MUL speed:"));
uint32_t startMS, stopMS;
uint32_t cnt;
MY_SERIALDEVICE.print(F("- 8bit MUL: "));
startMS = hwMillis();
uint8_t u8 = 1;
cnt = 0xFFFFF;
while (cnt--) {
u8 *= 3;
}
stopMS = hwMillis();
if (u8 == 171) {
PRINT(PSTR("OK, %" PRIu32 " ms\n"), stopMS - startMS);
} else {
MY_SERIALDEVICE.println(F("FAIL!"));
}
MY_SERIALDEVICE.print(F("- 16bit MUL: "));
startMS = hwMillis();
uint16_t u16 = 1;
cnt = 0xFFFFF;
while (cnt--) {
u16 *= 3;
}
stopMS = hwMillis();
if (u16 == 43691) {
PRINT(PSTR("OK, %" PRIu32 " ms\n"), stopMS - startMS);
} else {
MY_SERIALDEVICE.println(F("FAIL!"));
}
MY_SERIALDEVICE.print(F("- 32bit MUL: "));
startMS = hwMillis();
uint32_t u32 = 1;
cnt = 0xFFFFF;
while (cnt--) {
u32 *= 3;
}
stopMS = hwMillis();
if (u32 == 3664423595) {
PRINT(PSTR("OK, %" PRIu32 " ms\n"), stopMS - startMS);
} else {
MY_SERIALDEVICE.println(F("FAIL!"));
}
return false;
}
#endif
#if defined(ARDUINO_ARCH_AVR)
void diagnosticsWatchdogTest(void)
{
MY_SERIALDEVICE.println(F("Set WDT to 4s\n"));
hwWatchdogReset();
wdt_enable(WDTO_4S);
for (uint8_t timer = 0; timer < 10; timer++) {
MY_SERIALDEVICE.print(timer);
delay(1000);
}
MY_SERIALDEVICE.println(F("WDT failed!\n"));
}
#endif
#if defined(MY_RADIO_RFM95)
void diagnosticsRFM95Menu(void)
{
}
#endif
#if defined(MY_RADIO_RFM69) && defined(MY_RFM69_NEW_DRIVER)
void diagnosticsRFM69Menu(void)
{
RFM69_initialise(RFM69_868MHZ);
while (true) {
diagnosticsFlushSerial();
diagnosticsPrintSeparationLine();
MY_SERIALDEVICE.println(F("RFM69:\n"));
PRINT(PSTR("SPI: MOSI=%" PRIu8 ", MISO=%" PRIu8 ", SCK=%" PRIu8 ", CS=%" PRIu8 ", IRQ=%" PRIu8
"\n"),
MOSI, MISO, SCK, MY_RFM69_CS_PIN, MY_RFM69_IRQ_PIN);
PRINT(PSTR("RF: ID=%" PRIu8 ", FREQ=%" PRIu32 ", POW=%" PRIu8 "\n"),
RFM69_getAddress(), RFM69_getFrequency(), RFM69_getTxPowerLevel());
MY_SERIALDEVICE.println(F(
"[I] Init\n"
"[D] Dump REG\n"
"[Ax] ADDR=x\n"
"[Fx] FREQ=x\n"
"[Wx] POW=X\n"
"[L] SLP\n"
"[B] STDBY\n"
"[O] CAR on\n"
"[Q] CAR off\n"
"[R] RX\n"
"[Tx] TX to x\n"
"[P] Poll STAT\n"
"[X] Exit"
));
diagnosticsPrintSeparationLine();
diagnosticsSerialInput();
if (inputCmd == 'I') {
RFM69_initialise(RFM69_868MHZ);
} else if (inputCmd == 'A') {
RFM69_setAddress(inputParameter.toInt());
} else if (inputCmd == 'F') {
RFM69_setFrequency(inputParameter.toInt());
} else if (inputCmd == 'W') {
RFM69_setTxPowerLevel(inputParameter.toInt());
} else if (inputCmd == 'L') {
RFM69_sleep();
} else if (inputCmd == 'B') {
RFM69_standBy();
} else if (inputCmd == 'R') {
(void)RFM69_setRadioMode(RFM69_RADIO_MODE_RX);
} else if (inputCmd == 'T') {
uint8_t buffer[] = { 'T','E','S','T','R','F','M','6','9' };
RFM69_sendWithRetry(inputParameter.toInt(), buffer, sizeof(buffer), true);
} else if (inputCmd == 'P') {
diagnosticsPrintSeparationLine();
MY_SERIALDEVICE.println(F("Press any key to exit"));
diagnosticsPrintSeparationLine();
diagnosticsFlushSerial();
while (!MY_SERIALDEVICE.available()) {
PRINT(PSTR("IRQF1=0x%02" PRIX8 ", IRQF2=0x%02" PRIX8 ", IRQF=%" PRIu8 "\n"),
RFM69_readReg(RFM69_REG_IRQFLAGS1), RFM69_readReg(RFM69_REG_IRQFLAGS2), RFM69_irq);
delay(300);
}
MY_SERIALDEVICE.println(F("Exiting..."));
} else if (inputCmd == 'O') {
(void)RFM69_setRadioMode(RFM69_RADIO_MODE_TX);
} else if (inputCmd == 'Q') {
(void)RFM69_setRadioMode(RFM69_RADIO_MODE_STDBY);
} else if (inputCmd == 'D') {
uint8_t i = 0;
do {
PRINT(PSTR("Reg 0x%02" PRIX8 " = 0x%02" PRIX8 "\n"), i, RFM69_readReg(i));
} while (i++ != 0xFF);
} else if (inputCmd == 'X') {
return;
}
}
}
#endif
#if defined(MY_RADIO_RF24)
void diagnosticsRF24Menu(void)
{
RF24_initialize();
while (true) {
diagnosticsFlushSerial();
diagnosticsPrintSeparationLine();
MY_SERIALDEVICE.println(F("RF24:\n"));
PRINT(PSTR("SPI: MOSI=%" PRIu8 ", MISO=%" PRIu8 ", SCK=%" PRIu8 ", CS=%" PRIu8 ", CE=%" PRIu8 "\n"),
MOSI, MISO, SCK, MY_RF24_CS_PIN, MY_RF24_CE_PIN);
PRINT(PSTR("RF: ADDR=%" PRIu8 ", CH=%" PRIu8 ", POW=%" PRIu8 ", CFG=%" PRIu8 "\n"),
RF24_getNodeID(),
RF24_getChannel(), RF24_getRawTxPowerLevel(), RF24_getRFConfiguration());
MY_SERIALDEVICE.println(F("[I] Init\n"
"[D] Dump REG\n"
"[Ax] ADDR=x\n"
"[Cx] CH=x\n"
"[Wx] POW=X\n"
"[L] SLP\n"
"[B] STDBY\n"
"[O] CAR on\n"
"[Q] CAR off\n"
"[R] RX\n"
"[Tx] TX to x\n"
"[P] Poll STAT\n"
"[S] Scan CHs\n"
"[X] Exit"
));
diagnosticsPrintSeparationLine();
diagnosticsSerialInput();
if (inputCmd == 'I') {
RF24_initialize();
} else if (inputCmd == 'A') {
RF24_setNodeAddress(inputParameter.toInt());
} else if (inputCmd == 'C') {
RF24_setChannel(inputParameter.toInt());
} else if (inputCmd == 'W') {
RF24_setTxPowerLevel(inputParameter.toInt());
} else if (inputCmd == 'L') {
RF24_sleep();
} else if (inputCmd == 'B') {
RF24_standBy();
} else if (inputCmd == 'R') {
RF24_startListening();
} else if (inputCmd == 'T') {
uint8_t buffer[] = { 'T','E','S','T','R','F','2','4' };
RF24_sendMessage(inputParameter.toInt(), buffer, sizeof(buffer), false);
} else if (inputCmd == 'P') {
diagnosticsPrintSeparationLine();
MY_SERIALDEVICE.println(F("Press any key to exit"));
diagnosticsPrintSeparationLine();
diagnosticsFlushSerial();
while (!MY_SERIALDEVICE.available()) {
PRINT(PSTR("status=%02" PRIX8 "\n"), RF24_getStatus());
delay(300);
}
MY_SERIALDEVICE.println(F("Exiting..."));
} else if (inputCmd == 'O') {
RF24_enableConstantCarrierWave();
} else if (inputCmd == 'Q') {
RF24_disableConstantCarrierWave();
} else if (inputCmd == 'D') {
//uint8_t buffer[16];
for (uint8_t i = 0; i < 0x20; i++) {
PRINT(PSTR("Reg 0x%02" PRIX8 " = 0x%02" PRIX8 "\n"), i, RF24_readByteRegister(i));
/*
(void)RF24_readMultiByteRegister(i, buffer, sizeof(buffer));
PrintHex8(buffer, sizeof(buffer));
for (uint8_t cnt = 0; cnt < sizeof(buffer); cnt++) {
buffer[cnt] = 0xFF;
}
(void)RF24_writeMultiByteRegister(i, buffer, sizeof(buffer));
(void)RF24_readMultiByteRegister(i, buffer, sizeof(buffer));
PrintHex8(buffer, sizeof(buffer));
for (uint8_t cnt = 0; cnt < sizeof(buffer); cnt++) {
buffer[cnt] = 0x00;
}
(void)RF24_writeMultiByteRegister(i, buffer, sizeof(buffer));
(void)RF24_readMultiByteRegister(i, buffer, sizeof(buffer));
PrintHex8(buffer, sizeof(buffer));
*/
}
} else if (inputCmd == 'S') {
MY_SERIALDEVICE.println(F("Press any key to exit"));
diagnosticsFlushSerial();
const uint8_t num_channels = 126;
for(uint8_t i = 0; i < num_channels; i++) {
PRINT(PSTR("%" PRIX8), i >> 4);
}
MY_SERIALDEVICE.println();
for (uint8_t i = 0; i < num_channels; i++) {
PRINT(PSTR("%" PRIX8), i & 0xf);
}
MY_SERIALDEVICE.println();
while (!MY_SERIALDEVICE.available()) {
uint8_t values[num_channels];
// disable ACK on all pipes
RF24_setAutoACK(0);
// clear result array
(void)memset(values, 0, sizeof(values));
for (uint8_t rep_counter = 0; rep_counter < 100; rep_counter++) {
for (uint8_t channel = 0; channel < num_channels; channel++) {
RF24_setChannel(channel);
RF24_startListening();
delayMicroseconds(130 + 40);
// Carrier detected?
if (RF24_getReceivedPowerDetector()) {
values[channel] = values[channel] + 1;
}
RF24_stopListening();
}
}
for (uint8_t i = 0; i < num_channels; i++) {
PRINT(PSTR("%" PRIX8), min(0xf, values[i]));
}
MY_SERIALDEVICE.println();
}
} else if (inputCmd == 'X') {
return;
}
}
}
#endif
#if defined(MY_SENSOR_NETWORK)
void diagnosticsTSMStatus(void)
{
PRINT(PSTR("%" PRIu32 " TSM,%" PRIu8 ",%" PRIu8 ",%" PRIu8 ",%" PRIu32 ",%" PRIu32 ",%" PRIu8 ",%"
PRIu8 ",%" PRIu8 ",%" PRIu8 ",%" PRIu8 ",%" PRIu8 ",%" PRIu8 ",%" PRIu8 "\n"),
hwMillis(),
transportSanityCheck(),
getNodeId(),
getParentNodeId(),
_transportSM.stateEnter,
_transportSM.lastUplinkCheck,
_transportSM.findingParentNode,
_transportSM.uplinkOk,
_transportSM.pingActive,
_transportSM.transportActive,
_transportSM.stateRetries,
_transportSM.failedUplinkTransmissions,
_transportSM.failureCounter,
_transportSM.pingResponse);
}
#endif
void diagnosticsTransportSM(void)
{
while (true) {
diagnosticsPrintSeparationLine();
MY_SERIALDEVICE.println(F("TSP SM:\n"));
#if defined(MY_SENSOR_NETWORK)
PRINT(PSTR("ADDR=%" PRIu8 ",PAR=%" PRIu8 ",DGW=%" PRIu8 ",TSP=%" PRIu8 "\n"), getNodeId(),
getDistanceGW(), getParentNodeId(),
isTransportReady());
MY_SERIALDEVICE.println(F("[I] Init TSP\n"
"[S] Step TSM\n"
"[R] Run TSM"
));
#endif
MY_SERIALDEVICE.println(F("[X] Exit"));
diagnosticsPrintSeparationLine();
diagnosticsFlushSerial();
diagnosticsSerialInput();
if (inputCmd == 'I') {
#if defined(MY_SENSOR_NETWORK)
transportInitialise();
#endif
} else if (inputCmd == 'S') {
#if defined(MY_SENSOR_NETWORK)
transportProcess();
diagnosticsTSMStatus();
#endif
} else if (inputCmd == 'R') {
#if defined(MY_SENSOR_NETWORK)
MY_SERIALDEVICE.println(F("[U] CKU\n"
"[F] FPAR\n"
"[E] TSP ERR\n"
"[I] INIT\n"
"[Cx] PNG x\n"
"[Nx] ID=x\n"
"[Px] PAR=x\n"
"[Tx] TX x\n"
"[Sx] Sleep x ms\n"
"[X] EXIT\n"
));
uint32_t lastTimer = 0;
bool exitSignal = false;
while (!exitSignal) {
if (MY_SERIALDEVICE.available()) {
diagnosticsSerialInput();
if (inputCmd == 'U') {
transportCheckUplink();
} else if (inputCmd == 'F') {
transportSwitchSM(stParent);
} else if (inputCmd == 'E') {
transportSwitchSM(stFailure);
} else if (inputCmd == 'I') {
transportInitialise();
} else if (inputCmd == 'C') {
_transportSM.pingActive = false;
transportPingNode(inputParameter.toInt());
} else if (inputCmd == 'N') {
const uint8_t nodeID = inputParameter.toInt();
_transportConfig.nodeId = nodeID;
transportHALSetAddress(nodeID);
// Write ID to EEPROM
hwWriteConfig(EEPROM_NODE_ID_ADDRESS, nodeID);
} else if (inputCmd == 'P') {
_transportConfig.parentNodeId = inputParameter.toInt();
} else if (inputCmd == 'T') {
transportSendRoute(build(_msgTmp, inputParameter.toInt(), NODE_SENSOR_ID, C_SET, V_VAR1,
false).set((uint32_t)0xDEADBEAF));
} else if (inputCmd == 'S') {
(void)sleep((uint32_t)inputParameter.toInt(), false);
} else if (inputCmd == 'X') {
exitSignal = true;
}
}
transportProcess();
if (hwMillis() - lastTimer > 1000ul) {
lastTimer = hwMillis();
diagnosticsTSMStatus();
}
}
#endif
} else if (inputCmd == 'X') {
return;
} else {
MY_SERIALDEVICE.println(F("!CMD"));
}
}
}
void diagnosticsMCUMenu(void)
{
#if defined(ARDUINO_ARCH_ESP8266)
MY_SERIALDEVICE.println(F("ARCH: ESP8266"));
#elif defined(ARDUINO_ARCH_ESP32)
MY_SERIALDEVICE.println(F("ARCH: ESP32"));
#elif defined(ARDUINO_ARCH_AVR)
MY_SERIALDEVICE.println(F("ARCH: AVR"));
#elif defined(ARDUINO_ARCH_SAMD)
MY_SERIALDEVICE.println(F("ARCH: SAMD"));
#elif defined(ARDUINO_ARCH_STM32)
MY_SERIALDEVICE.println(F("ARCH: STM32"));
#elif defined(ARDUINO_ARCH_NRF5) || defined(ARDUINO_ARCH_NRF52)
MY_SERIALDEVICE.println(F("ARCH: NRF5"));
#elif defined(__arm__) && defined(TEENSYDUINO)
MY_SERIALDEVICE.println(F("ARCH: Teensyduino"));
#elif defined(__linux__)
MY_SERIALDEVICE.println(F("ARCH: Linux"));
#else
MY_SERIALDEVICE.println(F("ARCH: Unknown"));
#endif
#if defined(ARDUINO_ARCH_AVR)
PRINT(PSTR("AVR fuses: L:%02" PRIX8 ",H:%02" PRIX8 ",E:%02" PRIX8 ",LK:%02" PRIX8
"\n"),
boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS),
boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS),
boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS),
boot_lock_fuse_bits_get(GET_LOCK_BITS));
#endif
PRINT(PSTR("T_CPU: %" PRIi8 " C\n"), hwCPUTemperature());
PRINT(PSTR("V_CPU: %" PRIu16 " mV\n"), hwCPUVoltage());
MY_SERIALDEVICE.print(F("F_CPU: "));
MY_SERIALDEVICE.print(hwCPUFrequency() / 10.0);
MY_SERIALDEVICE.println(F(" MHz"));
MY_SERIALDEVICE.print(F("CPU ID: "));
unique_id_t ID;
const bool result = hwUniqueID(&ID);
PrintHex8(ID, sizeof(ID));
PRINT(PSTR("UID unique: %s\n"), result ? "true" : "false");
#if defined(MY_HW_HAS_GETENTROPY)
MY_SERIALDEVICE.println(F("RNG: True"));
#else
MY_SERIALDEVICE.println(F("RNG: Pseudo"));
#endif
#if defined(ARDUINO_ARCH_ESP32)
PRINT(PSTR("Chip rev: %" PRIu8 "\n"), ESP.getChipRevision());
PRINT(PSTR("Cycles: %" PRIu32 "\n"), ESP.getCycleCount());
PRINT(PSTR("SDK: %s\n"), ESP.getSdkVersion());
PRINT(PSTR("EFUSE: %16" PRIX64 "\n"), ESP.getEfuseMac());
PRINT(PSTR("Total HEAP size: %" PRIu32 "\n"), ESP.getHeapSize());
PRINT(PSTR("Free HEAP size: %" PRIu32 "\n"), ESP.getFreeHeap());
PRINT(PSTR("Min HEAP level: %" PRIu32 "\n"), ESP.getMinFreeHeap());
PRINT(PSTR("Max HEAP alloc: %" PRIu32 "\n"), ESP.getMaxAllocHeap());
PRINT(PSTR("PSRAM size: %" PRIu32 "\n"), ESP.getPsramSize());
PRINT(PSTR("Free PSRAM: %" PRIu32 "\n"), ESP.getFreePsram());
PRINT(PSTR("Min PSRAM level: %" PRIu32 "\n"), ESP.getMinFreePsram());
PRINT(PSTR("Max PSRAM alloc: %" PRIu32 "\n"), ESP.getMaxAllocPsram());
PRINT(PSTR("Flash size: %" PRIu32 "\n"), ESP.getFlashChipSize());
PRINT(PSTR("Flash speed: %" PRIu32 "\n"), ESP.getFlashChipSpeed());
PRINT(PSTR("Sketch size: %" PRIu32 "\n"), ESP.getSketchSize());
PRINT(PSTR("Free sketch space: %" PRIu32 "\n"), ESP.getFreeSketchSpace());
#endif
#if defined(ARDUINO_ARCH_ESP8266)
PRINT(PSTR("Chip id: %08" PRIX32 "\n"), ESP.getChipId());
PRINT(PSTR("Cycles: %" PRIu32 "\n"), ESP.getCycleCount());
PRINT(PSTR("SDK: %s\n"), ESP.getSdkVersion());
PRINT(PSTR("Free HEAP size: %" PRIu32 "\n"), ESP.getFreeHeap());
PRINT(PSTR("HEAP fragmentation: %" PRIu8 "\n"), ESP.getHeapFragmentation());
PRINT(PSTR("Max block alloc: %" PRIu32 "\n"), ESP.getMaxFreeBlockSize());
PRINT(PSTR("Flash id: %08" PRIX32 "\n"), ESP.getFlashChipId());
PRINT(PSTR("Flash size: %" PRIu32 "\n"), ESP.getFlashChipSize());
PRINT(PSTR("Flash speed: %" PRIu32 "\n"), ESP.getFlashChipSpeed());
PRINT(PSTR("Sketch size: %" PRIu32 "\n"), ESP.getSketchSize());
PRINT(PSTR("Free sketch space: %" PRIu32 "\n"), ESP.getFreeSketchSpace());
#endif
while (true) {
diagnosticsPrintSeparationLine();
MY_SERIALDEVICE.println(F("MCU:\n\n"
"[Dx] Read PIN\n"
"[Sx] Set PIN\n"
"[Rx] Reset PIN\n"
#if defined(ARDUINO_ARCH_AVR)
"[W] WDT\n"
#endif
"[Px] Sleep x ms\n"
"[X] Exit\n"
));
diagnosticsPrintSeparationLine();
diagnosticsFlushSerial();
diagnosticsSerialInput();
if (inputCmd == 'D') {
hwPinMode(inputParameter.toInt(), INPUT);
PRINT(PSTR("PIN %" PRIu8 " = %" PRIu8 "\n"), inputParameter.toInt(),
hwDigitalRead(inputParameter.toInt()));
} else if (inputCmd == 'S') {
PRINT(PSTR("SET PIN %" PRIu8 "\n"), inputParameter.toInt());
hwPinMode(inputParameter.toInt(), OUTPUT);
hwDigitalWrite(inputParameter.toInt(), HIGH);
} else if (inputCmd == 'R') {
PRINT(PSTR("CLR PIN %" PRIu8 "\n"), inputParameter.toInt());
hwPinMode(inputParameter.toInt(), OUTPUT);
hwDigitalWrite(inputParameter.toInt(), LOW);
} else if (inputCmd == 'W') {
#if defined(ARDUINO_ARCH_AVR)
diagnosticsWatchdogTest();
#endif
} else if (inputCmd == 'P') {
PRINT(PSTR("Sleeping %" PRIu32 "ms\n"), inputParameter.toInt());
transportSleep();
hwSleep((uint32_t)inputParameter.toInt());
PRINT(PSTR("waking up\n"));
transportStandBy();
} else if (inputCmd == 'X') {
return;
} else {
MY_SERIALDEVICE.println(F("!CMD"));
}
}
}
void diagnosticsMainMenu(void)
{
while (true) {
diagnosticsPrintSeparationLine();
MY_SERIALDEVICE.println(F("Main:\n\n"
"[M] MCU\n"
"[E] EEPROM\n"
"[C] CRYPTO\n"
"[R] Reboot\n"
"[I] Info\n"
"[T] TSP SM\n"
#if defined(MY_RADIO_RF24)
"[2] RF24\n"
#endif
#if defined(MY_RADIO_RFM69) && defined(MY_RFM69_NEW_DRIVER)
"[6] RFM69\n"
#endif
#if defined(MY_RADIO_RFM95)
"[9] RFM95\n"
#endif
));
diagnosticsPrintSeparationLine();
diagnosticsFlushSerial();
diagnosticsSerialInput();
if (inputCmd == 'T') {
diagnosticsTransportSM();
} else if (inputCmd == 'E') {
diagnosticsEEPROMMenu();
} else if (inputCmd == 'C') {
#if defined(MY_DIAGNOSTICS_CRYPTO)
diagnosticsCryptoMenu();
#else
MY_SERIALDEVICE.println(F("> Define MY_DIAGNOSTICS_CRYPTO to enable"));
#endif
} else if (inputCmd == 'M') {
diagnosticsMCUMenu();
} else if (inputCmd == '2') {
#if defined(MY_RADIO_RF24)
diagnosticsRF24Menu();
#endif
} else if (inputCmd == '6') {
#if defined(MY_RADIO_RFM69)
diagnosticsRFM69Menu();
#endif
} else if (inputCmd == '9') {
#if defined(MY_RADIO_RFM95)
diagnosticsRFM95Menu();
#endif
} else if (inputCmd == 'R') {
hwReboot();
} else if (inputCmd == 'I') {
MY_SERIALDEVICE.println(F("Press any key to exit\n"));
hwRandomNumberInit();
while (!MY_SERIALDEVICE.available()) {
PRINT(PSTR("> T_CPU=%" PRIi8 ", V_CPU=%" PRIu16 ", RNG=%" PRIu8 "\n"),
hwCPUTemperature(), hwCPUVoltage(), random(256));
doYield();
delay(100);
}
} else {
MY_SERIALDEVICE.println(F("!CMD"));
}
}
}
void diagnosticsRun(void)
{
MY_SERIALDEVICE.println(F("\nMySensors Diagnostics v1.0"));
diagnosticsPrintSeparationLine();
PRINT(PSTR("LIB: MySensors %s\n"), MYSENSORS_LIBRARY_VERSION);
PRINT(PSTR("REL: %" PRIu8 "\n"), MYSENSORS_LIBRARY_VERSION_PRERELEASE_NUMBER);
PRINT(PSTR("VER: %" PRIx32 "\n"), MYSENSORS_LIBRARY_VERSION_INT);
PRINT(PSTR("CAP: %s\n"), MY_CAPABILITIES);
diagnosticsMainMenu();
}

29
core/MyDiagnostics.h Normal file
View File

@@ -0,0 +1,29 @@
/*
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in RAM or EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
* Copyright (C) 2013-2026 Sensnology AB
* Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*/
#ifndef MyDiagnostics_h
#define MyDiagnostics_h
/**
* @brief Show diagnostics serial user interface
*
*/
void diagnosticsRun(void);
#endif

View File

@@ -98,6 +98,11 @@ void _infiniteLoop(void)
void _begin(void)
{
#if defined(MY_DIAGNOSTICS)
(void)hwInit();
diagnosticsRun();
_infiniteLoop();
#endif
#if defined(MY_CORE_ONLY)
// initialize HW and run setup if present
(void)hwInit();

View File

@@ -0,0 +1,28 @@
/*
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
* Copyright (C) 2013-2026 Sensnology AB
* Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*******************************
*/
#define MY_DEBUG
#define MY_RADIO_RF24
#define MY_DIAGNOSTICS
#include <MySensors.h>
void setup() {}
void loop() {}

View File

@@ -0,0 +1,29 @@
/*
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
* Copyright (C) 2013-2026 Sensnology AB
* Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*******************************
*/
#define MY_DEBUG
#define MY_RADIO_RFM69
#define MY_RFM69_NEW_DRIVER
#define MY_DIAGNOSTICS
#include <MySensors.h>
void setup() {}
void loop() {}

View File

@@ -0,0 +1,28 @@
/*
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
* Copyright (C) 2013-2026 Sensnology AB
* Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*******************************
*/
#define MY_DEBUG
#define MY_RADIO_RFM95
#define MY_DIAGNOSTICS
#include <MySensors.h>
void setup() {}
void loop() {}

View File

@@ -18,7 +18,7 @@
*
* Arduino core for ESP32: https://github.com/espressif/arduino-esp32
*
* MySensors ESP32 implementation, Copyright (C) 2017-2018 Olivier Mauti <olivier@mysensors.org>
* MySensors ESP32 implementation, Copyright (C) 2017-2026 Olivier Mauti <olivier@mysensors.org>
*
*/
@@ -142,8 +142,16 @@ int8_t hwSleep(const uint8_t interrupt1, const uint8_t mode1, const uint8_t inte
uint16_t hwCPUVoltage(void)
{
// in mV
return FUNCTION_NOT_SUPPORTED;
// experimental, not documented feature and inaccurate?
uint16_t internalBatReading;
if (WiFi.status() == 255) {
btStart();
internalBatReading = rom_phy_get_vdd33();
btStop();
} else {
internalBatReading = rom_phy_get_vdd33();
}
return internalBatReading;
}
uint16_t hwCPUFrequency(void)

View File

@@ -18,7 +18,7 @@
*
* Arduino core for ESP32: https://github.com/espressif/arduino-esp32
*
* MySensors ESP32 implementation, Copyright (C) 2017-2018 Olivier Mauti <olivier@mysensors.org>
* MySensors ESP32 implementation, Copyright (C) 2017-2026 Olivier Mauti <olivier@mysensors.org>
*
* Radio wiring ESP32(Node32s): RF24, RFM69, RFM95:
*
@@ -76,6 +76,9 @@
#define hwRandomNumberInit() randomSeed(esp_random())
#define hwGetSleepRemaining() (0ul)
// experimental, not documented feature
extern "C" int rom_phy_get_vdd33();
bool hwInit(void);
void hwReadConfigBlock(void *buf, void *addr, size_t length);
void hwWriteConfigBlock(void *buf, void *addr, size_t length);

View File

@@ -127,13 +127,15 @@ LOCAL uint8_t RF24_spiByteTransfer(const uint8_t cmd)
LOCAL uint8_t RF24_RAW_readByteRegister(const uint8_t cmd)
{
const uint8_t value = RF24_spiMultiByteTransfer(cmd, NULL, 1, true);
RF24_DEBUG(PSTR("RF24:RBR:REG=%" PRIu8 ",VAL=%" PRIu8 "\n"), cmd & RF24_REGISTER_MASK, value);
RF24_DEBUG(PSTR("RF24:RBR:REG=0x%02" PRIX8 ",VAL=0x%02" PRIX8 "\n"), cmd & RF24_REGISTER_MASK,
value);
return value;
}
LOCAL uint8_t RF24_RAW_writeByteRegister(const uint8_t cmd, uint8_t value)
{
RF24_DEBUG(PSTR("RF24:WBR:REG=%" PRIu8 ",VAL=%" PRIu8 "\n"), cmd & RF24_REGISTER_MASK, value);
RF24_DEBUG(PSTR("RF24:WBR:REG=0x%02" PRIX8 ",VAL=0x%02" PRIX8 "\n"), cmd & RF24_REGISTER_MASK,
value);
return RF24_spiMultiByteTransfer( cmd, &value, 1, false);
}
@@ -161,7 +163,12 @@ LOCAL uint8_t RF24_getFIFOStatus(void)
LOCAL void RF24_setChannel(const uint8_t channel)
{
RF24_writeByteRegister(RF24_REG_RF_CH,channel);
RF24_writeByteRegister(RF24_REG_RF_CH, channel);
}
LOCAL uint8_t RF24_getChannel(void)
{
return RF24_readByteRegister(RF24_REG_RF_CH);
}
LOCAL void RF24_setRetries(const uint8_t retransmitDelay, const uint8_t retransmitCount)
@@ -211,6 +218,11 @@ LOCAL void RF24_setDynamicPayload(const uint8_t pipe)
RF24_writeByteRegister(RF24_REG_DYNPD, pipe);
}
LOCAL uint8_t RF24_getRFConfiguration(void)
{
return RF24_readByteRegister(RF24_REG_NRF_CONFIG);
}
LOCAL void RF24_setRFConfiguration(const uint8_t configuration)
{
RF24_writeByteRegister(RF24_REG_NRF_CONFIG, configuration);
@@ -400,10 +412,15 @@ LOCAL bool RF24_sanityCheck(void)
return (RF24_readByteRegister(RF24_REG_RF_SETUP) == RF24_RF_SETUP) && (RF24_readByteRegister(
RF24_REG_RF_CH) == MY_RF24_CHANNEL);
}
LOCAL uint8_t RF24_getRawTxPowerLevel(void)
{
return (RF24_readByteRegister(RF24_REG_RF_SETUP) >> 1) & 3;
}
LOCAL int16_t RF24_getTxPowerLevel(void)
{
// in dBm
return (int16_t)((-6) * (3-((RF24_readByteRegister(RF24_REG_RF_SETUP) >> 1) & 3)));
return (int16_t)((-6) * (3 - RF24_getRawTxPowerLevel()));
}
LOCAL uint8_t RF24_getTxPowerPercent(void)

View File

@@ -177,8 +177,9 @@ LOCAL uint8_t RF24_RAW_writeByteRegister(const uint8_t cmd, const uint8_t value)
// helper macros
#define RF24_readByteRegister(__reg) RF24_RAW_readByteRegister(RF24_CMD_READ_REGISTER | (RF24_REGISTER_MASK & (__reg))) //!< RF24_readByteRegister
#define RF24_readMultiByteRegister(__reg,__buf,__len) RF24_spiMultiByteTransfer(RF24_CMD_READ_REGISTER | (RF24_REGISTER_MASK & (__reg)), (uint8_t *)__buf, __len, true) //!< RF24_readMultiByteRegister
#define RF24_writeByteRegister(__reg,__value) RF24_RAW_writeByteRegister(RF24_CMD_WRITE_REGISTER | (RF24_REGISTER_MASK & (__reg)), __value) //!< RF24_writeByteRegister
#define RF24_writeMultiByteRegister(__reg,__buf,__len) RF24_spiMultiByteTransfer(RF24_CMD_WRITE_REGISTER | (RF24_REGISTER_MASK & (__reg)),(uint8_t *)__buf, __len,false) //!< RF24_writeMultiByteRegister
#define RF24_writeMultiByteRegister(__reg,__buf,__len) RF24_spiMultiByteTransfer(RF24_CMD_WRITE_REGISTER | (RF24_REGISTER_MASK & (__reg)), (uint8_t *)__buf, __len, false) //!< RF24_writeMultiByteRegister
/**
* @brief RF24_flushRX
@@ -278,6 +279,11 @@ LOCAL bool RF24_initialize(void);
*/
LOCAL void RF24_setChannel(const uint8_t channel);
/**
* @brief RF24_getChannel
* @return channel
*/
LOCAL uint8_t RF24_getChannel(void) __attribute__((unused));
/**
* @brief RF24_setRetries
* @param retransmitDelay
* @param retransmitCount
@@ -319,6 +325,11 @@ LOCAL void RF24_setAutoACK(const uint8_t pipe);
*/
LOCAL void RF24_setDynamicPayload(const uint8_t pipe);
/**
* @brief RF24_getRFConfiguration
* @return RF configuration
*/
LOCAL uint8_t RF24_getRFConfiguration(void) __attribute__((unused));
/**
* @brief RF24_setRFConfiguration
* @param configuration
*/
@@ -357,8 +368,13 @@ LOCAL void RF24_enableFeatures(void);
*/
LOCAL uint8_t RF24_getTxPowerPercent(void);
/**
* @brief RF24_getRawTxPowerLevel
* @return power level
*/
LOCAL uint8_t RF24_getRawTxPowerLevel(void);
/**
* @brief RF24_getTxPowerLevel
* @return
* @return power level in pseudo-dBm
*/
LOCAL int16_t RF24_getTxPowerLevel(void);
/**

View File

@@ -425,6 +425,16 @@ LOCAL bool RFM69_send(const uint8_t recipient, uint8_t *data, const uint8_t len,
return RFM69_sendFrame(&packet, increaseSequenceCounter);
}
LOCAL uint32_t RFM69_getFrequency(void)
{
uint32_t freqHz;
freqHz = (uint32_t)RFM69_readReg(RFM69_REG_FRFMSB) << 16;
freqHz |= RFM69_readReg(RFM69_REG_FRFMID) << 8;
freqHz |= RFM69_readReg(RFM69_REG_FRFLSB);
freqHz *= RFM69_FSTEP;
return freqHz;
}
LOCAL void RFM69_setFrequency(const uint32_t frequencyHz)
{
const uint32_t freqHz = (uint32_t)(frequencyHz / RFM69_FSTEP);

View File

@@ -410,6 +410,11 @@ LOCAL bool RFM69_sendFrame(rfm69_packet_t *packet, const bool increaseSequenceCo
LOCAL bool RFM69_send(const uint8_t recipient, uint8_t *data, const uint8_t len,
const rfm69_controlFlags_t flags, const bool increaseSequenceCounter = true);
/**
* @brief Gets the transmitter and receiver center frequency
* @return frequencyHz Frequency in Hz
*/
LOCAL uint32_t RFM69_getFrequency(void) __attribute__((unused));
/**
* @brief Sets the transmitter and receiver center frequency
* @param frequencyHz Frequency in Hz

View File

@@ -86,6 +86,8 @@ MY_DEBUG LITERAL1
MY_DEBUGDEVICE LITERAL1
MY_DEBUG_VERBOSE_GATEWAY LITERAL1
MY_SPECIAL_DEBUG LITERAL1
MY_DIAGNOSTICS LITERAL1
MY_DIAGNOSTICS_CRYPTO LITERAL1
# OTA
MY_DEBUG_OTA LITERAL1