STM32 sleep support (#1586)

* adding STM32 HAL sleep implementation

* fixed formatting

* added STM32F1 sleep support (legacy RTC)

* clean up code, no functional change

* fixed static analysis warnings
This commit is contained in:
dirkju
2025-12-24 17:50:13 +01:00
committed by GitHub
parent bd94b61bed
commit 9369c67903
3 changed files with 541 additions and 121 deletions

View File

@@ -49,6 +49,23 @@
#include "MyHwSTM32.h"
// Sleep mode state variables
static volatile uint8_t _wokeUpByInterrupt = INVALID_INTERRUPT_NUM;
static volatile uint8_t _wakeUp1Interrupt = INVALID_INTERRUPT_NUM;
static volatile uint8_t _wakeUp2Interrupt = INVALID_INTERRUPT_NUM;
static uint32_t sleepRemainingMs = 0ul;
// RTC handle for wake-up timer
static RTC_HandleTypeDef hrtc = {0};
static bool rtcInitialized = false;
// Forward declarations for sleep helper functions
static bool hwSleepInit(void);
static bool hwSleepConfigureTimer(uint32_t ms);
static void hwSleepRestoreSystemClock(void);
static void wakeUp1ISR(void);
static void wakeUp2ISR(void);
bool hwInit(void)
{
#if !defined(MY_DISABLED_SERIAL)
@@ -254,36 +271,494 @@ uint16_t hwFreeMem(void)
#endif
}
// ======================== Sleep Mode Helper Functions ========================
/**
* @brief Initialize RTC for sleep wake-up timer
* @return true if successful, false on error
*/
static bool hwSleepInit(void)
{
if (rtcInitialized) {
return true;
}
// Enable PWR clock
__HAL_RCC_PWR_CLK_ENABLE();
// Enable backup domain access
HAL_PWR_EnableBkUpAccess();
// Only reset backup domain if RTC is not already configured
// This prevents disrupting other peripherals when MySensors radio is initialized first
if ((RCC->BDCR & RCC_BDCR_RTCEN) != 0) {
// RTC already enabled - check if it's the right clock source
// If already configured, skip reset to avoid disrupting existing setup
} else {
// RTC not enabled - safe to reset backup domain for clean slate
__HAL_RCC_BACKUPRESET_FORCE();
HAL_Delay(10);
__HAL_RCC_BACKUPRESET_RELEASE();
HAL_Delay(10);
}
// Try LSE first (32.768 kHz external crystal - more accurate)
// Fall back to LSI if LSE is not available
bool useLSE = false;
// Check if LSE is already running
if ((RCC->BDCR & RCC_BDCR_LSERDY) != 0) {
// LSE already ready - use it
useLSE = true;
} else {
// Attempt to start LSE
RCC->BDCR |= RCC_BDCR_LSEON;
uint32_t timeout = 2000000; // LSE takes longer to start
while (((RCC->BDCR & RCC_BDCR_LSERDY) == 0) && (timeout > 0)) {
timeout--;
}
if (timeout > 0) {
// LSE started successfully
useLSE = true;
} else {
// LSE failed - fall back to LSI
if ((RCC->CSR & RCC_CSR_LSIRDY) == 0) {
// LSI not ready, try to start it
RCC->BDCR &= ~RCC_BDCR_LSEON; // Disable failed LSE
// Enable LSI (internal ~32 kHz oscillator)
RCC->CSR |= RCC_CSR_LSION;
timeout = 1000000;
while (((RCC->CSR & RCC_CSR_LSIRDY) == 0) && (timeout > 0)) {
timeout--;
}
if (timeout == 0) {
return false; // Both LSE and LSI failed
}
}
// LSI ready (either was already running or just started)
}
}
// Configure RTC clock source (only if not already configured correctly)
uint32_t currentRtcSel = (RCC->BDCR & RCC_BDCR_RTCSEL);
uint32_t desiredRtcSel = useLSE ? RCC_BDCR_RTCSEL_0 : RCC_BDCR_RTCSEL_1;
if (currentRtcSel != desiredRtcSel) {
// Need to change clock source - clear and set
RCC->BDCR &= ~RCC_BDCR_RTCSEL; // Clear selection
RCC->BDCR |= desiredRtcSel; // Set new selection
}
RCC->BDCR |= RCC_BDCR_RTCEN; // Ensure RTC clock is enabled
// Initialize RTC peripheral
hrtc.Instance = RTC;
#if defined(STM32F1xx)
// ============================================================
// STM32F1: Legacy RTC with counter-based architecture
// ============================================================
// F1 RTC uses simple 32-bit counter with prescaler
// No calendar, no wake-up timer - use RTC Alarm instead
if (useLSE) {
// LSE: 32.768 kHz exact - set prescaler for 1 Hz tick
hrtc.Init.AsynchPrediv = 32767; // (32767+1) = 32768 = 1 Hz
} else {
// LSI: ~40 kHz (STM32F1 LSI is typically 40kHz, not 32kHz)
hrtc.Init.AsynchPrediv = 39999; // (39999+1) = 40000 = 1 Hz (approximate)
}
hrtc.Init.OutPut = RTC_OUTPUTSOURCE_NONE;
// F1 RTC initialization is simpler
if (HAL_RTC_Init(&hrtc) != HAL_OK) {
return false;
}
// CRITICAL: Enable RTC Alarm interrupt in NVIC (F1 uses Alarm, not WKUP)
// Without this, the MCU cannot wake from STOP mode via RTC
HAL_NVIC_SetPriority(RTC_Alarm_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(RTC_Alarm_IRQn);
#else
// ============================================================
// STM32F2/F3/F4/F7/L1/L4/L5/G0/G4/H7: Modern RTC
// ============================================================
// Modern RTC with BCD calendar and dedicated wake-up timer
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
if (useLSE) {
// LSE: 32.768 kHz exact - perfect 1 Hz with these prescalers
hrtc.Init.AsynchPrediv = 127; // (127+1) = 128
hrtc.Init.SynchPrediv = 255; // (255+1) = 256, total = 32768
} else {
// LSI: ~32 kHz (variable) - approximate 1 Hz
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 249; // Adjusted for typical LSI
}
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
// Check if RTC is already initialized (INITS bit in ISR register)
// If already initialized, we can skip HAL_RTC_Init which may fail
// when called after other peripherals (like SPI) are already running
if ((RTC->ISR & RTC_ISR_INITS) == 0) {
// RTC not yet initialized - call HAL_RTC_Init
if (HAL_RTC_Init(&hrtc) != HAL_OK) {
return false;
}
} else {
// RTC already initialized - just update the handle
// This allows us to use it for sleep even if something else initialized it
hrtc.State = HAL_RTC_STATE_READY;
}
// CRITICAL: Enable RTC wakeup interrupt in NVIC
// Without this, the MCU cannot wake from STOP mode via RTC
HAL_NVIC_SetPriority(RTC_WKUP_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(RTC_WKUP_IRQn);
#endif // STM32F1xx
rtcInitialized = true;
return true;
}
/**
* @brief Configure RTC wake-up timer for specified duration
* @param ms Milliseconds to sleep (0 = disable timer)
* @return true if successful, false on error
*/
static bool hwSleepConfigureTimer(uint32_t ms)
{
if (!rtcInitialized) {
if (!hwSleepInit()) {
return false;
}
}
if (ms == 0) {
#if defined(STM32F1xx)
// F1: Disable RTC Alarm
HAL_RTC_DeactivateAlarm(&hrtc, RTC_ALARM_A);
#else
// Modern STM32: Disable wake-up timer
HAL_RTCEx_DeactivateWakeUpTimer(&hrtc);
#endif
return true;
}
#if defined(STM32F1xx)
// ============================================================
// STM32F1: Use RTC Alarm for wake-up
// ============================================================
// F1 doesn't have wake-up timer, use alarm instead
// RTC counter runs at 1 Hz (configured in hwSleepInit)
// Read current counter value
// Note: On F1, read CNT register directly (HAL doesn't provide a clean way)
uint32_t currentCounter = RTC->CNTL | (RTC->CNTH << 16);
// Calculate alarm value (counter + seconds)
// Convert ms to seconds (RTC runs at 1 Hz)
uint32_t seconds = ms / 1000;
if (seconds == 0) {
seconds = 1; // Minimum 1 second
}
if (seconds > 0xFFFFFFFF - currentCounter) {
// Overflow protection
seconds = 0xFFFFFFFF - currentCounter;
}
uint32_t alarmValue = currentCounter + seconds;
// Configure alarm
RTC_AlarmTypeDef sAlarm = {0};
sAlarm.Alarm = alarmValue;
if (HAL_RTC_SetAlarm_IT(&hrtc, &sAlarm, RTC_FORMAT_BIN) != HAL_OK) {
return false;
}
#else
// ============================================================
// STM32F2/F3/F4/F7/L1/L4/L5/G0/G4/H7: Use wake-up timer
// ============================================================
uint32_t wakeUpCounter;
uint32_t wakeUpClock;
// Choose appropriate clock and counter value based on sleep duration
if (ms <= 32000) {
// Up to 32 seconds: use RTCCLK/16 (2048 Hz, 0.488 ms resolution)
wakeUpClock = RTC_WAKEUPCLOCK_RTCCLK_DIV16;
// Counter = ms * 2048 / 1000 = ms * 2.048
// Use bit shift for efficiency: ms * 2048 = ms << 11
wakeUpCounter = (ms << 11) / 1000;
if (wakeUpCounter < 2) {
wakeUpCounter = 2; // Minimum 2 ticks
}
if (wakeUpCounter > 0xFFFF) {
wakeUpCounter = 0xFFFF;
}
} else {
// More than 32 seconds: use CK_SPRE (1 Hz, 1 second resolution)
wakeUpClock = RTC_WAKEUPCLOCK_CK_SPRE_16BITS;
wakeUpCounter = ms / 1000; // Convert to seconds
if (wakeUpCounter == 0) {
wakeUpCounter = 1; // Minimum 1 second
}
if (wakeUpCounter > 0xFFFF) {
wakeUpCounter = 0xFFFF; // Max ~18 hours
}
}
// Configure wake-up timer with interrupt
if (HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, wakeUpCounter, wakeUpClock) != HAL_OK) {
return false;
}
#endif // STM32F1xx
return true;
}
/**
* @brief Restore system clock after wake-up from STOP mode
* @note After STOP mode, system clock defaults to HSI (16 MHz). We always call
* SystemClock_Config() to restore the full clock configuration as the
* Arduino core and peripherals expect it.
*/
static void hwSleepRestoreSystemClock(void)
{
// After STOP mode, system runs on HSI (16 MHz)
// Always restore the system clock configuration to what the Arduino core expects
SystemClock_Config();
}
/**
* @brief ISR for wake-up interrupt 1
*/
static void wakeUp1ISR(void)
{
_wokeUpByInterrupt = _wakeUp1Interrupt;
}
/**
* @brief ISR for wake-up interrupt 2
*/
static void wakeUp2ISR(void)
{
_wokeUpByInterrupt = _wakeUp2Interrupt;
}
/**
* @brief RTC Wake-up Timer interrupt handler
*/
#if defined(STM32F1xx)
// F1: Use RTC Alarm interrupt
extern "C" void RTC_Alarm_IRQHandler(void)
{
HAL_RTC_AlarmIRQHandler(&hrtc);
}
#else
// Modern STM32: Use dedicated wake-up timer interrupt
extern "C" void RTC_WKUP_IRQHandler(void)
{
HAL_RTCEx_WakeUpTimerIRQHandler(&hrtc);
}
#endif
// ======================== Public Sleep Functions ========================
uint32_t hwGetSleepRemaining(void)
{
return sleepRemainingMs;
}
int8_t hwSleep(uint32_t ms)
{
// TODO: Implement low-power sleep mode
// For now, use simple delay
// Future: Use STM32 STOP or STANDBY mode with RTC wakeup
// Initialize RTC if needed
if (!rtcInitialized) {
if (!hwSleepInit()) {
return MY_SLEEP_NOT_POSSIBLE;
}
}
(void)ms;
return MY_SLEEP_NOT_POSSIBLE;
// Configure RTC wake-up timer
if (ms > 0) {
if (!hwSleepConfigureTimer(ms)) {
return MY_SLEEP_NOT_POSSIBLE;
}
}
// Reset sleep remaining
sleepRemainingMs = 0ul;
// CRITICAL: Clear wakeup flags before entering sleep
// This prevents spurious wakeups from previous events
#if defined(STM32F1xx)
__HAL_RTC_ALARM_CLEAR_FLAG(&hrtc, RTC_FLAG_ALRAF);
#else
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&hrtc, RTC_FLAG_WUTF);
#endif
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
// Suspend SysTick to prevent 1ms interrupts during sleep
HAL_SuspendTick();
// NOTE: USB CDC will disconnect during STOP mode (expected behavior)
// USB peripheral requires system clock which is stopped in STOP mode
// After wake-up, the host will detect USB disconnect/reconnect
// This is normal and unavoidable when using STOP mode sleep
// Enter STOP mode with low-power regulator
// This achieves 10-50 µA sleep current on STM32F4
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
// ====================================================================
// === MCU is in STOP mode here (10-50 µA), waiting for wake-up ===
// ====================================================================
// After wake-up: restore system clock (defaults to HSI)
hwSleepRestoreSystemClock();
// Resume SysTick
HAL_ResumeTick();
// CRITICAL: Clear wakeup flags after wake-up
// This ensures clean state for next sleep cycle
#if defined(STM32F1xx)
__HAL_RTC_ALARM_CLEAR_FLAG(&hrtc, RTC_FLAG_ALRAF);
#else
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&hrtc, RTC_FLAG_WUTF);
#endif
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
// Disable wake-up timer
if (ms > 0) {
#if defined(STM32F1xx)
HAL_RTC_DeactivateAlarm(&hrtc, RTC_ALARM_A);
#else
HAL_RTCEx_DeactivateWakeUpTimer(&hrtc);
#endif
}
// Always timer wake-up for this variant
return MY_WAKE_UP_BY_TIMER;
}
int8_t hwSleep(const uint8_t interrupt, const uint8_t mode, uint32_t ms)
{
// TODO: Implement interrupt-based sleep
// Future: Configure EXTI and enter STOP mode
(void)interrupt;
(void)mode;
(void)ms;
return MY_SLEEP_NOT_POSSIBLE;
// Delegate to dual-interrupt variant with INVALID second interrupt
return hwSleep(interrupt, mode, INVALID_INTERRUPT_NUM, 0, ms);
}
int8_t hwSleep(const uint8_t interrupt1, const uint8_t mode1,
const uint8_t interrupt2, const uint8_t mode2, uint32_t ms)
{
// TODO: Implement dual-interrupt sleep
// Initialize RTC if needed
if (!rtcInitialized) {
if (!hwSleepInit()) {
return MY_SLEEP_NOT_POSSIBLE;
}
}
(void)interrupt1;
(void)mode1;
(void)interrupt2;
(void)mode2;
(void)ms;
return MY_SLEEP_NOT_POSSIBLE;
// Configure RTC wake-up timer (if ms > 0)
if (ms > 0) {
if (!hwSleepConfigureTimer(ms)) {
return MY_SLEEP_NOT_POSSIBLE;
}
}
// Reset sleep remaining
sleepRemainingMs = 0ul;
// Configure interrupt wake-up sources
_wakeUp1Interrupt = interrupt1;
_wakeUp2Interrupt = interrupt2;
_wokeUpByInterrupt = INVALID_INTERRUPT_NUM;
// Attach interrupts in critical section (prevent premature wake-up)
MY_CRITICAL_SECTION {
if (interrupt1 != INVALID_INTERRUPT_NUM)
{
attachInterrupt(digitalPinToInterrupt(interrupt1), wakeUp1ISR, mode1);
}
if (interrupt2 != INVALID_INTERRUPT_NUM)
{
attachInterrupt(digitalPinToInterrupt(interrupt2), wakeUp2ISR, mode2);
}
}
// CRITICAL: Clear wakeup flags before entering sleep
#if defined(STM32F1xx)
__HAL_RTC_ALARM_CLEAR_FLAG(&hrtc, RTC_FLAG_ALRAF);
#else
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&hrtc, RTC_FLAG_WUTF);
#endif
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
// Suspend SysTick
HAL_SuspendTick();
// NOTE: USB CDC will disconnect during STOP mode (expected behavior)
// See note in timer-only hwSleep() variant above
// Enter STOP mode with low-power regulator
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
// ====================================================================
// === MCU is in STOP mode here (10-50 µA), waiting for wake-up ===
// ====================================================================
// After wake-up: restore system clock
hwSleepRestoreSystemClock();
// Resume SysTick
HAL_ResumeTick();
// CRITICAL: Clear wakeup flags after wake-up
#if defined(STM32F1xx)
__HAL_RTC_ALARM_CLEAR_FLAG(&hrtc, RTC_FLAG_ALRAF);
#else
__HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&hrtc, RTC_FLAG_WUTF);
#endif
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
// Detach interrupts
if (interrupt1 != INVALID_INTERRUPT_NUM) {
detachInterrupt(digitalPinToInterrupt(interrupt1));
}
if (interrupt2 != INVALID_INTERRUPT_NUM) {
detachInterrupt(digitalPinToInterrupt(interrupt2));
}
// Disable wake-up timer
if (ms > 0) {
#if defined(STM32F1xx)
HAL_RTC_DeactivateAlarm(&hrtc, RTC_ALARM_A);
#else
HAL_RTCEx_DeactivateWakeUpTimer(&hrtc);
#endif
}
// Determine wake-up source
int8_t ret = MY_WAKE_UP_BY_TIMER; // Default: timer wake-up
if (_wokeUpByInterrupt != INVALID_INTERRUPT_NUM) {
ret = (int8_t)_wokeUpByInterrupt; // Interrupt wake-up
}
// Reset interrupt tracking
_wokeUpByInterrupt = INVALID_INTERRUPT_NUM;
_wakeUp1Interrupt = INVALID_INTERRUPT_NUM;
_wakeUp2Interrupt = INVALID_INTERRUPT_NUM;
return ret;
}

View File

@@ -90,7 +90,12 @@
// Timing functions
#define hwMillis() millis()
#define hwGetSleepRemaining() (0ul)
/**
* @brief Get remaining sleep time
* @return Remaining sleep time in milliseconds
*/
uint32_t hwGetSleepRemaining(void);
/**
* @brief Initialize hardware
@@ -177,31 +182,34 @@ uint16_t hwFreeMem(void);
/**
* @brief Sleep for specified milliseconds
* @param ms Milliseconds to sleep
* @return Actual sleep time or MY_SLEEP_NOT_POSSIBLE
* @note Initial implementation returns MY_SLEEP_NOT_POSSIBLE
* @param ms Milliseconds to sleep (0 = sleep until interrupt)
* @return MY_WAKE_UP_BY_TIMER (-1) if woken by timer, MY_SLEEP_NOT_POSSIBLE (-2) on error
* @note Uses STOP mode with low-power regulator (10-50 µA sleep current)
* @note Maximum sleep time depends on RTC configuration (~18 hours)
*/
int8_t hwSleep(uint32_t ms);
/**
* @brief Sleep with interrupt wake
* @param interrupt Pin number for interrupt
* @param interrupt Arduino pin number for interrupt wake-up
* @param mode Interrupt mode (RISING, FALLING, CHANGE)
* @param ms Maximum sleep time
* @return Actual sleep time or MY_SLEEP_NOT_POSSIBLE
* @note Initial implementation returns MY_SLEEP_NOT_POSSIBLE
* @param ms Maximum sleep time in milliseconds (0 = no timeout)
* @return Interrupt number (0-255) if woken by interrupt, MY_WAKE_UP_BY_TIMER (-1) if timeout,
* MY_SLEEP_NOT_POSSIBLE (-2) on error
* @note Supports wake-up on any GPIO pin via EXTI (critical for radio IRQ)
*/
int8_t hwSleep(const uint8_t interrupt, const uint8_t mode, uint32_t ms);
/**
* @brief Sleep with dual interrupt wake
* @param interrupt1 First pin number
* @param mode1 First interrupt mode
* @param interrupt2 Second pin number
* @param mode2 Second interrupt mode
* @param ms Maximum sleep time
* @return Actual sleep time or MY_SLEEP_NOT_POSSIBLE
* @note Initial implementation returns MY_SLEEP_NOT_POSSIBLE
* @param interrupt1 First Arduino pin number for interrupt wake-up
* @param mode1 First interrupt mode (RISING, FALLING, CHANGE)
* @param interrupt2 Second Arduino pin number for interrupt wake-up
* @param mode2 Second interrupt mode (RISING, FALLING, CHANGE)
* @param ms Maximum sleep time in milliseconds (0 = no timeout)
* @return Interrupt number that caused wake-up, MY_WAKE_UP_BY_TIMER (-1) if timeout,
* MY_SLEEP_NOT_POSSIBLE (-2) on error
* @note Useful for hybrid sensors (e.g., button press OR periodic wake-up)
*/
int8_t hwSleep(const uint8_t interrupt1, const uint8_t mode1,
const uint8_t interrupt2, const uint8_t mode2, uint32_t ms);

View File

@@ -36,12 +36,9 @@ Should work on any STM32 board supported by the STM32duino core.
- [x] CPU frequency reporting
- [x] Critical section (interrupt disable/restore)
- [x] RAM routing table support
### Planned 🔄
- [ ] Low-power sleep modes (STOP, STANDBY)
- [ ] RTC-based timekeeping
- [ ] Interrupt-based wake from sleep
- [ ] Free memory reporting (heap analysis)
- [x] Low-power STOP mode sleep (RTC wake-up timer)
- [x] RTC-based timed wake-up (F1: 1s resolution, F4+: subsecond)
- [x] Interrupt-based wake from sleep (GPIO EXTI)
## Pin Mapping
@@ -118,23 +115,13 @@ debug_tool = stlink
Common `board` values for platformio.ini:
- `blackpill_f401cc` - STM32F401CC Black Pill
- `blackpill_f411ce` - STM32F411CE Black Pill (recommended)
- `blackpill_f411ce` - STM32F411CE Black Pill
- `bluepill_f103c8` - STM32F103C8 Blue Pill
- `nucleo_f401re` - STM32F401RE Nucleo
- `nucleo_f411re` - STM32F411RE Nucleo
- `genericSTM32F103C8` - Generic F103C8
- See [PlatformIO boards](https://docs.platformio.org/en/latest/boards/index.html#st-stm32) for complete list
### Upload Methods
Supported `upload_protocol` options:
- `stlink` - ST-Link V2 programmer (recommended)
- `dfu` - USB DFU bootloader (requires boot0 jumper)
- `serial` - Serial bootloader (requires FTDI adapter)
- `jlink` - Segger J-Link
- `blackmagic` - Black Magic Probe
- `hid` - HID Bootloader 2.0
## Arduino IDE Configuration
1. Install STM32duino core:
@@ -224,21 +211,29 @@ The STM32 HAL uses the STM32duino EEPROM library, which provides Flash-based EEP
Configuration is automatic. EEPROM size can be adjusted in the STM32duino menu or via build flags.
## Low-Power Considerations
## Low-Power Sleep Support
### Current Status
Sleep modes are **NOT YET IMPLEMENTED** in this initial release. Calling `sleep()` functions will return `MY_SLEEP_NOT_POSSIBLE`.
### Implemented ✅
### Future Implementation
The STM32 supports several low-power modes:
- **Sleep mode**: ~10mA (CPU stopped, peripherals running)
- **Stop mode**: ~10-100µA (CPU and most peripherals stopped)
- **Standby mode**: ~1-10µA (only backup domain active)
**STOP mode sleep** with RTC wake-up is fully functional:
**Supported Families:**
- **STM32F1** (Blue Pill) - RTC alarm-based, 1-second resolution
- **STM32F2/F3/F4/F7** - RTC wake-up timer, subsecond resolution
- **STM32L1/L4/L5** - RTC wake-up timer, ultra-low power
- **STM32G0/G4** - RTC wake-up timer
- **STM32H7** - RTC wake-up timer
**Power Consumption:**
- **STM32F1**: 5-20 µA (STOP mode)
- **STM32F4**: 10-50 µA (STOP mode)
**Usage:**
```cpp
sleep(60000); // Sleep for 60 seconds
sleep(interrupt, mode, 60000); // Sleep with interrupt wake-up
```
Implementation will use:
- RTC for timed wake-up
- EXTI for interrupt wake-up
- Backup SRAM for state retention
## Troubleshooting
@@ -251,9 +246,6 @@ Implementation will use:
**Error: `EEPROM.h not found`**
- Solution: Update STM32duino core to latest version (2.0.0+)
**Error: Undefined reference to `__disable_irq`**
- Solution: Ensure CMSIS is included (should be automatic with STM32duino)
### Upload Issues
**Upload fails with ST-Link**
@@ -267,64 +259,9 @@ Implementation will use:
- Verify with: `dfu-util -l`
- After upload, set BOOT0 back to 0 (GND)
### Runtime Issues
**Serial monitor shows garbage**
- Check baud rate matches (default 115200)
- USB CDC may require driver on Windows
- Try hardware UART instead
**Radio not working**
- Verify 3.3V power supply (nRF24 needs clean power)
- Check SPI pin connections
- Add 10µF capacitor across radio VCC/GND
- Verify CE and CS pin definitions
**EEPROM not persisting**
- EEPROM emulation requires Flash write access
- Check for debug mode preventing Flash writes
- Verify sufficient Flash space for EEPROM pages
## Performance Characteristics
### STM32F411CE Black Pill
- **CPU**: 100 MHz ARM Cortex-M4F
- **Flash**: 512KB
- **RAM**: 128KB
- **Current**: ~50mA active, <1µA standby (when implemented)
- **MySensors overhead**: ~30KB Flash, ~4KB RAM
### Benchmarks (preliminary)
- **Radio message latency**: <10ms (similar to AVR)
- **EEPROM read**: ~50µs per byte
- **EEPROM write**: ~5ms per byte (Flash write)
- **Temperature reading**: ~100µs
## Contributing
This STM32 HAL is designed for easy contribution to the main MySensors repository. When contributing:
1. Follow MySensors coding style
2. Test on multiple STM32 variants if possible
3. Document any chip-specific quirks
4. Update this README with new features
## References
- [STM32duino Core](https://github.com/stm32duino/Arduino_Core_STM32)
- [STM32duino Wiki](https://github.com/stm32duino/Arduino_Core_STM32/wiki)
- [PlatformIO STM32 Platform](https://docs.platformio.org/en/latest/platforms/ststm32.html)
- [MySensors Documentation](https://www.mysensors.org/download)
- [STM32 Reference Manuals](https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html)
## License
This code is part of the MySensors project and is licensed under the GNU General Public License v2.0.
## Version History
- **v1.0.0** (2025-01-17) - Initial STM32 HAL implementation
- Basic functionality (GPIO, SPI, EEPROM, Serial)
- Tested on STM32F401/F411 Black Pill
- Gateway and sensor node support
- No sleep mode yet (planned for v1.1.0)