mirror of
https://github.com/mysensors/MySensors.git
synced 2026-02-20 01:21:27 +01:00
* Arduino_core_STM32 support v1 after three previous attempts failed or were abandoned (#1422, #1437, #1486) * fixed compile warning on redefined (v)snprintf * add missing WDG reset, harden VREF and ATEMP to fail gracefully when not available
306 lines
7.6 KiB
C++
306 lines
7.6 KiB
C++
/*
|
|
* The MySensors Arduino library handles the wireless radio link and protocol
|
|
* between your home built sensors/actuators and HA controller of choice.
|
|
* The sensors forms a self healing radio network with optional repeaters. Each
|
|
* repeater and gateway builds a routing tables in EEPROM which keeps track of the
|
|
* network topology allowing messages to be routed to nodes.
|
|
*
|
|
* Created by Henrik Ekblad <henrik.ekblad@mysensors.org>
|
|
* Copyright (C) 2013-2025 Sensnology AB
|
|
* Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors
|
|
*
|
|
* Documentation: http://www.mysensors.org
|
|
* Support Forum: http://forum.mysensors.org
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
/**
|
|
* @file MyHwSTM32.cpp
|
|
* @brief Hardware abstraction layer for STM32 microcontrollers using STM32duino core
|
|
*
|
|
* This implementation uses the official STM32duino Arduino core which provides
|
|
* STM32Cube HAL underneath. It supports a wide range of STM32 families including
|
|
* F0, F1, F4, L0, L4, G0, G4, H7, and more.
|
|
*
|
|
* Tested on:
|
|
* - STM32F401CC/CE Black Pill
|
|
* - STM32F411CE Black Pill
|
|
*
|
|
* Pin Mapping Example (STM32F4 Black Pill):
|
|
*
|
|
* nRF24L01+ Radio (SPI1):
|
|
* - SCK: PA5
|
|
* - MISO: PA6
|
|
* - MOSI: PA7
|
|
* - CSN: PA4
|
|
* - CE: PB0 (configurable via MY_RF24_CE_PIN)
|
|
*
|
|
* RFM69/RFM95 Radio (SPI1):
|
|
* - SCK: PA5
|
|
* - MISO: PA6
|
|
* - MOSI: PA7
|
|
* - CS: PA4
|
|
* - IRQ: PA3 (configurable)
|
|
* - RST: PA2 (configurable)
|
|
*/
|
|
|
|
#include "MyHwSTM32.h"
|
|
|
|
bool hwInit(void)
|
|
{
|
|
#if !defined(MY_DISABLED_SERIAL)
|
|
MY_SERIALDEVICE.begin(MY_BAUD_RATE);
|
|
#if defined(MY_GATEWAY_SERIAL)
|
|
// Wait for serial port to connect (needed for native USB)
|
|
while (!MY_SERIALDEVICE) {
|
|
; // Wait for serial port connection
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// STM32duino EEPROM library auto-initializes on first use
|
|
// No explicit initialization required
|
|
return true;
|
|
}
|
|
|
|
void hwReadConfigBlock(void *buf, void *addr, size_t length)
|
|
{
|
|
uint8_t *dst = static_cast<uint8_t *>(buf);
|
|
int pos = reinterpret_cast<int>(addr);
|
|
|
|
for (size_t i = 0; i < length; i++) {
|
|
dst[i] = EEPROM.read(pos + i);
|
|
}
|
|
}
|
|
|
|
void hwWriteConfigBlock(void *buf, void *addr, size_t length)
|
|
{
|
|
uint8_t *src = static_cast<uint8_t *>(buf);
|
|
int pos = reinterpret_cast<int>(addr);
|
|
|
|
for (size_t i = 0; i < length; i++) {
|
|
EEPROM.update(pos + i, src[i]);
|
|
}
|
|
|
|
// Commit changes to flash (STM32duino EEPROM emulation)
|
|
// Note: This happens automatically on next read or explicit commit
|
|
}
|
|
|
|
uint8_t hwReadConfig(const int addr)
|
|
{
|
|
return EEPROM.read(addr);
|
|
}
|
|
|
|
void hwWriteConfig(const int addr, uint8_t value)
|
|
{
|
|
EEPROM.update(addr, value);
|
|
}
|
|
|
|
void hwWatchdogReset(void)
|
|
{
|
|
#if defined(HAL_IWDG_MODULE_ENABLED) && defined(IWDG)
|
|
// Reset independent watchdog if enabled
|
|
// Use direct register write to reload watchdog counter
|
|
// This works whether IWDG was initialized by HAL or LL drivers
|
|
IWDG->KR = IWDG_KEY_RELOAD;
|
|
#endif
|
|
// No-op if watchdog not enabled
|
|
}
|
|
|
|
void hwReboot(void)
|
|
{
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
void hwRandomNumberInit(void)
|
|
{
|
|
// Use internal temperature sensor and ADC noise as entropy source
|
|
// This provides reasonably good random seed values
|
|
|
|
#ifdef ADC1
|
|
uint32_t seed = 0;
|
|
|
|
// Read multiple samples from different sources for entropy
|
|
for (uint8_t i = 0; i < 32; i++) {
|
|
uint32_t value = 0;
|
|
|
|
#ifdef TEMP_SENSOR_AVAILABLE
|
|
// Try to read internal temperature sensor if available
|
|
value ^= analogRead(ATEMP);
|
|
#endif
|
|
|
|
#ifdef VREF_AVAILABLE
|
|
// Mix in internal voltage reference reading
|
|
value ^= analogRead(AVREF);
|
|
#endif
|
|
|
|
// Mix in current time
|
|
value ^= hwMillis();
|
|
|
|
// Mix in system tick
|
|
value ^= micros();
|
|
|
|
// Accumulate into seed
|
|
seed ^= (value & 0x7) << (i % 29);
|
|
|
|
// Small delay to ensure values change
|
|
delayMicroseconds(100);
|
|
}
|
|
|
|
randomSeed(seed);
|
|
#else
|
|
// Fallback: use millis as weak entropy source
|
|
randomSeed(hwMillis());
|
|
#endif
|
|
}
|
|
|
|
bool hwUniqueID(unique_id_t *uniqueID)
|
|
{
|
|
#ifdef UID_BASE
|
|
// STM32 unique device ID is stored at a fixed address
|
|
// Length is 96 bits (12 bytes) but we store 16 bytes for compatibility
|
|
|
|
uint32_t *id = (uint32_t *)UID_BASE;
|
|
uint8_t *dst = (uint8_t *)uniqueID;
|
|
|
|
// Copy 12 bytes of unique ID
|
|
for (uint8_t i = 0; i < 12; i++) {
|
|
dst[i] = ((uint8_t *)id)[i];
|
|
}
|
|
|
|
// Pad remaining bytes with zeros
|
|
for (uint8_t i = 12; i < 16; i++) {
|
|
dst[i] = 0;
|
|
}
|
|
|
|
return true;
|
|
#else
|
|
// Unique ID not available on this variant
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
uint16_t hwCPUVoltage(void)
|
|
{
|
|
#if defined(VREF_AVAILABLE) && defined(AVREF) && defined(__HAL_RCC_ADC1_CLK_ENABLE)
|
|
// Read internal voltage reference to calculate VDD
|
|
// VREFINT is typically 1.2V (varies by STM32 family)
|
|
|
|
uint32_t vrefint = analogRead(AVREF);
|
|
|
|
if (vrefint > 0) {
|
|
// Calculate VDD in millivolts
|
|
// Formula: VDD = 3.3V * 4096 / ADC_reading
|
|
// Adjusted: VDD = 1200mV * 4096 / vrefint_reading
|
|
return (uint16_t)((1200UL * 4096UL) / vrefint);
|
|
}
|
|
#endif
|
|
|
|
// Return typical 3.3V if measurement not available
|
|
return 3300;
|
|
}
|
|
|
|
uint16_t hwCPUFrequency(void)
|
|
{
|
|
// Return CPU frequency in 0.1 MHz units
|
|
// F_CPU is defined by the build system (e.g., 84000000 for 84 MHz)
|
|
return F_CPU / 100000UL;
|
|
}
|
|
|
|
int8_t hwCPUTemperature(void)
|
|
{
|
|
#if defined(TEMP_SENSOR_AVAILABLE) && defined(ATEMP) && defined(__HAL_RCC_ADC1_CLK_ENABLE)
|
|
// Read internal temperature sensor
|
|
// Note: Requires calibration values for accurate results
|
|
|
|
int32_t temp_raw = analogRead(ATEMP);
|
|
|
|
#ifdef TEMP110_CAL_ADDR
|
|
// Use factory calibration if available (STM32F4, L4, etc.)
|
|
uint16_t *temp30_cal = (uint16_t *)TEMP30_CAL_ADDR;
|
|
uint16_t *temp110_cal = (uint16_t *)TEMP110_CAL_ADDR;
|
|
|
|
if (temp30_cal && temp110_cal && *temp110_cal != *temp30_cal) {
|
|
// Calculate temperature using two-point calibration
|
|
// Formula: T = ((110-30) / (CAL_110 - CAL_30)) * (raw - CAL_30) + 30
|
|
int32_t temp = 30 + ((110 - 30) * (temp_raw - *temp30_cal)) /
|
|
(*temp110_cal - *temp30_cal);
|
|
|
|
// Apply user calibration
|
|
temp = (temp - MY_STM32_TEMPERATURE_OFFSET) / MY_STM32_TEMPERATURE_GAIN;
|
|
|
|
return (int8_t)temp;
|
|
}
|
|
#endif
|
|
|
|
// Fallback: use typical values (less accurate)
|
|
// Typical slope: 2.5 mV/°C, V25 = 0.76V for STM32F4
|
|
// This is a rough approximation
|
|
float voltage = (temp_raw * 3.3f) / 4096.0f;
|
|
int32_t temp = 25 + (int32_t)((voltage - 0.76f) / 0.0025f);
|
|
|
|
return (int8_t)((temp - MY_STM32_TEMPERATURE_OFFSET) / MY_STM32_TEMPERATURE_GAIN);
|
|
#else
|
|
// Temperature sensor not available
|
|
return FUNCTION_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
|
|
uint16_t hwFreeMem(void)
|
|
{
|
|
// Calculate free heap memory
|
|
// This uses newlib's mallinfo if available
|
|
|
|
#ifdef STACK_TOP
|
|
extern char *__brkval;
|
|
extern char __heap_start;
|
|
|
|
char *heap_end = __brkval ? __brkval : &__heap_start;
|
|
char stack_var;
|
|
|
|
// Calculate space between heap and stack
|
|
return (uint16_t)(&stack_var - heap_end);
|
|
#else
|
|
// Alternative method: try to allocate and measure
|
|
// Not implemented to avoid fragmentation
|
|
return FUNCTION_NOT_SUPPORTED;
|
|
#endif
|
|
}
|
|
|
|
int8_t hwSleep(uint32_t ms)
|
|
{
|
|
// TODO: Implement low-power sleep mode
|
|
// For now, use simple delay
|
|
// Future: Use STM32 STOP or STANDBY mode with RTC wakeup
|
|
|
|
(void)ms;
|
|
return MY_SLEEP_NOT_POSSIBLE;
|
|
}
|
|
|
|
int8_t hwSleep(const uint8_t interrupt, const uint8_t mode, uint32_t ms)
|
|
{
|
|
// TODO: Implement interrupt-based sleep
|
|
// Future: Configure EXTI and enter STOP mode
|
|
|
|
(void)interrupt;
|
|
(void)mode;
|
|
(void)ms;
|
|
return MY_SLEEP_NOT_POSSIBLE;
|
|
}
|
|
|
|
int8_t hwSleep(const uint8_t interrupt1, const uint8_t mode1,
|
|
const uint8_t interrupt2, const uint8_t mode2, uint32_t ms)
|
|
{
|
|
// TODO: Implement dual-interrupt sleep
|
|
|
|
(void)interrupt1;
|
|
(void)mode1;
|
|
(void)interrupt2;
|
|
(void)mode2;
|
|
(void)ms;
|
|
return MY_SLEEP_NOT_POSSIBLE;
|
|
}
|