/* MicroView Arduino Library Copyright (C) 2014 GeekAmmo This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include //#include #include // This fixed ugly GCC warning "only initialized variables can be placed into program memory area" #undef PROGMEM #define PROGMEM __attribute__((section(".progmem.data"))) // Add header of the fonts here. Remove as many as possible to conserve FLASH memory. #include #include #include #include <7segment.h> #include #include #include // Change the total fonts included #define TOTALFONTS 7 #define recvLEN 100 char serInStr[recvLEN]; // TODO - need to fix a value so that this will not take up too much memory. uint8_t serCmd[recvLEN]; // Add the font name as declared in the header file. Remove as many as possible to get conserve FLASH memory. const unsigned char *MicroView::fontsPointer[]={ font5x7 ,font8x16 ,sevensegment ,fontlargenumber ,space01 ,space02 ,space03 }; // TODO - Need to be able to let user add custom fonts from outside of the library // TODO - getTotalFonts(), addFont() return font number, removeFont() /* Page buffer 64 x 48 divided by 8 = 384 bytes Page buffer is required because in SPI mode, the host cannot read the SSD1306's GDRAM of the controller. This page buffer serves as a scratch RAM for graphical functions. All drawing function will first be drawn on this page buffer, only upon calling display() function will transfer the page buffer to the actual LCD controller's memory. */ static uint8_t screenmemory [] = { // LCD Memory organised in 64 horizontal pixel and 6 rows of byte // B B .............B ----- // y y .............y \ // t t .............t \ // e e .............e \ // 0 1 .............63 \ // \ // D0 D0.............D0 \ // D1 D1.............D1 / ROW 0 // D2 D2.............D2 / // D3 D3.............D3 / // D4 D4.............D4 / // D5 D5.............D5 / // D6 D6.............D6 / // D7 D7.............D7 ---- //SparkFun Electronics LOGO 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0xF8, 0xFC, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F, 0x07, 0x07, 0x06, 0x06, 0x00, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x81, 0x07, 0x0F, 0x3F, 0x3F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFE, 0xFC, 0xFC, 0xFC, 0xFE, 0xFF, 0xFF, 0xFF, 0xFC, 0xF8, 0xE0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFC, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF1, 0xE0, 0xE0, 0xE0, 0xE0, 0xE0, 0xF0, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x3F, 0x1F, 0x07, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x3F, 0x1F, 0x1F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x07, 0x07, 0x07, 0x03, 0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0x7F, 0x3F, 0x1F, 0x0F, 0x07, 0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; void MicroView::begin() { // default 5x7 font setFontType(0); setColor(WHITE); setDrawMode(NORM); setCursor(0,0); pinMode(OLEDPWR, OUTPUT); digitalWrite(OLEDPWR,HIGH); // Setting up SPI pins pinMode(MOSI, OUTPUT); pinMode(SCK, OUTPUT); //pinMode(DC, OUTPUT); pinMode(RESET, OUTPUT); pinMode(SS, INPUT); digitalWrite(SS, HIGH); ssport = portOutputRegister(digitalPinToPort(SS)); sspinmask = digitalPinToBitMask(SS); ssreg = portModeRegister(digitalPinToPort(SS)); dcport = portOutputRegister(digitalPinToPort(DC)); dcpinmask = digitalPinToBitMask(DC); dcreg = portModeRegister(digitalPinToPort(DC)); digitalWrite(RESET, HIGH); // VDD (3.3V) goes high at start, lets just chill for 5 ms delay(5); // bring reset low digitalWrite(RESET, LOW); // Setup SPI frequency MVSPI.setClockDivider(SPI_CLOCK_DIV2); MVSPI.begin(); // wait 10ms delay(10); // bring out of reset pinMode(RESET,INPUT_PULLUP); //digitalWrite(RESET, HIGH); // Init sequence for 64x48 OLED module command(DISPLAYOFF); // 0xAE command(SETDISPLAYCLOCKDIV); // 0xD5 command(0x80); // the suggested ratio 0x80 command(SETMULTIPLEX); // 0xA8 command(0x2F); command(SETDISPLAYOFFSET); // 0xD3 command(0x0); // no offset command(SETSTARTLINE | 0x0); // line #0 command(CHARGEPUMP); // enable charge pump command(0x14); command(NORMALDISPLAY); // 0xA6 command(DISPLAYALLONRESUME); // 0xA4 command(SEGREMAP | 0x1); command(COMSCANDEC); command(SETCOMPINS); // 0xDA command(0x12); command(SETCONTRAST); // 0x81 command(0x8F); command(SETPRECHARGE); // 0xd9 command(0xF1); command(SETVCOMDESELECT); // 0xDB command(0x40); command(DISPLAYON); //--turn on oled panel clear(ALL); // Erase hardware memory inside the OLED controller to avoid random data in memory. Serial.begin(115200); } void MicroView::command(uint8_t c) { // Hardware SPI *dcreg |= dcpinmask; // Set DC pin to OUTPUT *dcport &= ~dcpinmask; // DC pin LOW *ssreg |= sspinmask; // Set SS pin to OUTPUT *ssport &= ~sspinmask; // SS LOW MVSPI.transfer(c); *ssport |= sspinmask; // SS HIGH *ssreg &= ~sspinmask; // Set SS pin to INPUT *dcreg &= ~dcpinmask; // Set DC to INPUT to avoid high voltage over driving the OLED logic } void MicroView::data(uint8_t c) { // Hardware SPI *dcport |= dcpinmask; // DC HIGH *ssreg |= sspinmask; // Set SS pin to OUTPUT *ssport &= ~sspinmask; // SS LOW MVSPI.transfer(c); *ssport |= sspinmask; // SS HIGH *ssreg &= ~sspinmask; // Set SS pin to INPUT *dcreg &= ~dcpinmask; // Set DC to INPUT to avoid high voltage over driving the OLED logic } void MicroView::setPageAddress(uint8_t add) { add=0xb0|add; command(add); return; } void MicroView::setColumnAddress(uint8_t add) { command((0x10|(add>>4))+0x02); command((0x0f&add)); return; } /* Clear GDRAM inside the LCD controller - mode = ALL Clear screen page buffer - mode = PAGE */ void MicroView::clear(uint8_t mode) { // uint8_t page=6, col=0x40; if (mode==ALL) { for (int i=0;i<8; i++) { setPageAddress(i); setColumnAddress(0); for (int j=0; j<0x80; j++) { data(0); } } } else { memset(screenmemory,0,384); // (64 x 48) / 8 = 384 //display(); } } /* Clear GDRAM inside the LCD controller - mode = ALL with c character. Clear screen page buffer - mode = PAGE with c character. */ void MicroView::clear(uint8_t mode, uint8_t c) { //uint8_t page=6, col=0x40; if (mode==ALL) { for (int i=0;i<8; i++) { setPageAddress(i); setColumnAddress(0); for (int j=0; j<0x80; j++) { data(c); } } } else { memset(screenmemory,c,384); // (64 x 48) / 8 = 384 display(); } } void MicroView::invert(boolean inv) { if (inv) command(INVERTDISPLAY); else command(NORMALDISPLAY); } void MicroView::contrast(uint8_t contrast) { command(SETCONTRAST); // 0x81 command(contrast); } // This routine is to transfer the page buffer to the LCD controller's memory. void MicroView::display(void) { uint8_t i, j; for (i=0; i<6; i++) { setPageAddress(i); setColumnAddress(0); for (j=0;j<0x40;j++) { data(screenmemory[i*0x40+j]); } } } #if ARDUINO >= 100 size_t MicroView::write(uint8_t c) { #else void MicroView::write(uint8_t c) { #endif if (c == '\n') { cursorY += fontHeight; cursorX = 0; } else if (c == '\r') { // skip } else { drawChar(cursorX, cursorY, c, foreColor, drawMode); cursorX += fontWidth+1; if ((cursorX > (LCDWIDTH - fontWidth))) { cursorY += fontHeight; cursorX = 0; } } #if ARDUINO >= 100 return 1; #endif } void MicroView::setCursor(uint8_t x, uint8_t y) { cursorX=x; cursorY=y; } void MicroView::pixel(uint8_t x, uint8_t y) { pixel(x,y,foreColor,drawMode); } void MicroView::pixel(uint8_t x, uint8_t y, uint8_t color, uint8_t mode) { if ((x<0) || (x>=LCDWIDTH) || (y<0) || (y>=LCDHEIGHT)) return; if (mode==XOR) { if (color==WHITE) screenmemory[x+ (y/8)*LCDWIDTH] ^= _BV((y%8)); } else { if (color==WHITE) screenmemory[x+ (y/8)*LCDWIDTH] |= _BV((y%8)); else screenmemory[x+ (y/8)*LCDWIDTH] &= ~_BV((y%8)); } //display(); } // Draw line using current fore color and current draw mode void MicroView::line(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1) { line(x0,y0,x1,y1,foreColor,drawMode); } // Draw line using color and mode // bresenham's algorithm void MicroView::line(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1, uint8_t color, uint8_t mode) { uint8_t steep = abs(y1 - y0) > abs(x1 - x0); if (steep) { swap(x0, y0); swap(x1, y1); } if (x0 > x1) { swap(x0, x1); swap(y0, y1); } uint8_t dx, dy; dx = x1 - x0; dy = abs(y1 - y0); int8_t err = dx / 2; int8_t ystep; if (y0 < y1) { ystep = 1; } else { ystep = -1;} for (; x0= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; pixel(x0 + x, y0 + y, color, mode); pixel(x0 - x, y0 + y, color, mode); pixel(x0 + x, y0 - y, color, mode); pixel(x0 - x, y0 - y, color, mode); pixel(x0 + y, y0 + x, color, mode); pixel(x0 - y, y0 + x, color, mode); pixel(x0 + y, y0 - x, color, mode); pixel(x0 - y, y0 - x, color, mode); } } // Draw filled circle using current fore color and current draw mode void MicroView::circleFill(uint8_t x0, uint8_t y0, uint8_t radius) { circleFill(x0,y0,radius,foreColor,drawMode); } // Draw filled circle using color and mode void MicroView::circleFill(uint8_t x0, uint8_t y0, uint8_t radius, uint8_t color, uint8_t mode) { // TODO - - find a way to check for no overlapping of pixels so that XOR draw mode will work perfectly int8_t f = 1 - radius; int8_t ddF_x = 1; int8_t ddF_y = -2 * radius; int8_t x = 0; int8_t y = radius; // Temporary disable fill circle for XOR mode. if (mode==XOR) return; for (uint8_t i=y0-radius; i<=y0+radius; i++) { pixel(x0, i, color, mode); } while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; for (uint8_t i=y0-y; i<=y0+y; i++) { pixel(x0+x, i, color, mode); pixel(x0-x, i, color, mode); } for (uint8_t i=y0-x; i<=y0+x; i++) { pixel(x0+y, i, color, mode); pixel(x0-y, i, color, mode); } } } uint8_t MicroView::getLCDHeight(void) { return LCDHEIGHT; } uint8_t MicroView::getLCDWidth(void) { return LCDWIDTH; } uint8_t MicroView::getFontWidth(void) { return fontWidth; } uint8_t MicroView::getFontHeight(void) { return fontHeight; } uint8_t MicroView::getFontStartChar(void) { return fontStartChar; } uint8_t MicroView::getFontTotalChar(void) { return fontTotalChar; } uint8_t MicroView::getTotalFonts(void) { return TOTALFONTS; } uint8_t MicroView::getFontType(void) { return fontType; } uint8_t MicroView::setFontType(uint8_t type) { if ((type>=TOTALFONTS) || (type<0)) return false; fontType=type; fontWidth=pgm_read_byte(fontsPointer[fontType]+0); fontHeight=pgm_read_byte(fontsPointer[fontType]+1); fontStartChar=pgm_read_byte(fontsPointer[fontType]+2); fontTotalChar=pgm_read_byte(fontsPointer[fontType]+3); fontMapWidth=(pgm_read_byte(fontsPointer[fontType]+4)*100)+pgm_read_byte(fontsPointer[fontType]+5); // two bytes values into integer 16 return true; } void MicroView::setColor(uint8_t color) { foreColor=color; } void MicroView::setDrawMode(uint8_t mode) { drawMode=mode; } // Draw character using current fore color and current draw mode void MicroView::drawChar(uint8_t x, uint8_t y, uint8_t c) { drawChar(x,y,c,foreColor,drawMode); } // Draw character using color and mode void MicroView::drawChar(uint8_t x, uint8_t y, uint8_t c, uint8_t color, uint8_t mode) { // TODO - New routine to take font of any height, at the moment limited to font height in multiple of 8 pixels uint8_t rowsToDraw,row, tempC; uint8_t i,j,temp; uint16_t charPerBitmapRow,charColPositionOnBitmap,charRowPositionOnBitmap,charBitmapStartPosition; if ((c(fontStartChar+fontTotalChar-1))) // no bitmap for the required c return; tempC=c-fontStartChar; // each row (in datasheet is call page) is 8 bits high, 16 bit high character will have 2 rows to be drawn rowsToDraw=fontHeight/8; // 8 is LCD's page size, see SSD1306 datasheet if (rowsToDraw<=1) rowsToDraw=1; // the following draw function can draw anywhere on the screen, but SLOW pixel by pixel draw if (rowsToDraw==1) { for (i=0;i>=1; } } return; } // font height over 8 bit // take character "0" ASCII 48 as example charPerBitmapRow=fontMapWidth/fontWidth; // 256/8 =32 char per row charColPositionOnBitmap=tempC % charPerBitmapRow; // =16 charRowPositionOnBitmap=int(tempC/charPerBitmapRow); // =1 charBitmapStartPosition=(charRowPositionOnBitmap * fontMapWidth * (fontHeight/8)) + (charColPositionOnBitmap * fontWidth) ; // each row on LCD is 8 bit height (see datasheet for explanation) for(row=0;row>=1; } } } /* fast direct memory draw but has a limitation to draw in ROWS // only 1 row to draw for font with 8 bit height if (rowsToDraw==1) { for (i=0; i0) { // process Serial data result=strtok(serInStr,","); if (result !=NULL) { temp=atoi(result); serCmd[index]=(uint8_t)temp & 0xff; // we only need 8 bit number index++; for (uint8_t i;i0) uView.setCursor(offsetX,offsetY+10); else uView.setCursor(offsetX+34,offsetY+1); uView.print(strBuffer); } // ------------------------------------------------------------------------------------- // Slider Widget - end // ------------------------------------------------------------------------------------- // ------------------------------------------------------------------------------------- // Gauge Widget - start // ------------------------------------------------------------------------------------- MicroViewGauge::MicroViewGauge(uint8_t newx, uint8_t newy, int16_t min, int16_t max):MicroViewWidget(newx, newy, min, max) { style=0; radius=15; needFirstDraw=true; prevValue=getMinValue(); drawFace(); draw(); } MicroViewGauge::MicroViewGauge(uint8_t newx, uint8_t newy, int16_t min, int16_t max, uint8_t sty):MicroViewWidget(newx, newy, min, max) { if (sty==WIDGETSTYLE0) { style=0; radius=15; } else { style=1; radius=23; } needFirstDraw=true; prevValue=getMinValue(); drawFace(); draw(); } void MicroViewGauge::drawFace() { uint8_t offsetX, offsetY, majorLine; float degreeSec, fromSecX, fromSecY, toSecX, toSecY; offsetX=getX(); offsetY=getY(); uView.circle(offsetX,offsetY,radius); for (int i=150;i<=390;i+=30) { // Major tick from 150 degree to 390 degree degreeSec=i*(PI/180); fromSecX = cos(degreeSec) * (radius / 1.5); fromSecY = sin(degreeSec) * (radius / 1.5); toSecX = cos(degreeSec) * (radius / 1); toSecY = sin(degreeSec) * (radius / 1); uView.line(1+offsetX+fromSecX,1+offsetY+fromSecY,1+offsetX+toSecX,1+offsetY+toSecY); } if(radius>15) { for (int i=150;i<=390;i+=15) { // Minor tick from 150 degree to 390 degree degreeSec=i*(PI/180); fromSecX = cos(degreeSec) * (radius / 1.3); fromSecY = sin(degreeSec) * (radius / 1.3); toSecX = cos(degreeSec) * (radius / 1); toSecY = sin(degreeSec) * (radius / 1); uView.line(1+offsetX+fromSecX,1+offsetY+fromSecY,1+offsetX+toSecX,1+offsetY+toSecY); } } } void MicroViewGauge::draw() { uint8_t offsetX, offsetY; uint8_t tickPosition=0; float degreeSec, fromSecX, fromSecY, toSecX, toSecY; char strBuffer[5]; offsetX=getX(); offsetY=getY(); if (needFirstDraw) { degreeSec = (((float)(prevValue-getMinValue())/(float)(getMaxValue()-getMinValue()))*240); // total 240 degree in the widget degreeSec = (degreeSec+150) * (PI/180); // 150 degree starting point toSecX = cos(degreeSec) * (radius / 1.2); toSecY = sin(degreeSec) * (radius / 1.2); uView.line(offsetX,offsetY,1+offsetX+toSecX,1+offsetY+toSecY, WHITE,XOR); sprintf(strBuffer,"%4d", prevValue); // we need to force 4 digit so that blank space will cover larger value needFirstDraw=false; } else { // Draw previous pointer in XOR mode to erase it degreeSec = (((float)(prevValue-getMinValue())/(float)(getMaxValue()-getMinValue()))*240); // total 240 degree in the widget degreeSec = (degreeSec+150) * (PI/180); toSecX = cos(degreeSec) * (radius / 1.2); toSecY = sin(degreeSec) * (radius / 1.2); uView.line(offsetX,offsetY,1+offsetX+toSecX,1+offsetY+toSecY, WHITE,XOR); degreeSec = (((float)(getValue()-getMinValue())/(float)(getMaxValue()-getMinValue()))*240); // total 240 degree in the widget degreeSec = (degreeSec+150) * (PI/180); // 150 degree starting point toSecX = cos(degreeSec) * (radius / 1.2); toSecY = sin(degreeSec) * (radius / 1.2); uView.line(offsetX,offsetY,1+offsetX+toSecX,1+offsetY+toSecY, WHITE,XOR); sprintf(strBuffer,"%4d", getValue()); // we need to force 4 digit so that blank space will cover larger value prevValue=getValue(); } // Draw value if(style>0) uView.setCursor(offsetX-10,offsetY+10); else uView.setCursor(offsetX-11,offsetY+11); uView.print(strBuffer); } // ------------------------------------------------------------------------------------- // Slider Widget - end // ------------------------------------------------------------------------------------- void MVSPIClass::begin() { // Set SS to high so a connected chip will be "deselected" by default digitalWrite(SS, HIGH); // When the SS pin is set as OUTPUT, it can be used as // a general purpose output port (it doesn't influence // SPI operations). pinMode(SS, OUTPUT); // Warning: if the SS pin ever becomes a LOW INPUT then SPI // automatically switches to Slave, so the data direction of // the SS pin MUST be kept as OUTPUT. SPCR |= _BV(MSTR); SPCR |= _BV(SPE); // Set direction register for SCK and MOSI pin. // MISO pin automatically overrides to INPUT. // By doing this AFTER enabling SPI, we avoid accidentally // clocking in a single bit since the lines go directly // from "input" to SPI control. // http://code.google.com/p/arduino/issues/detail?id=888 pinMode(SCK, OUTPUT); pinMode(MOSI, OUTPUT); } void MVSPIClass::end() { SPCR &= ~_BV(SPE); } void MVSPIClass::setBitOrder(uint8_t bitOrder) { if(bitOrder == LSBFIRST) { SPCR |= _BV(DORD); } else { SPCR &= ~(_BV(DORD)); } } void MVSPIClass::setDataMode(uint8_t mode) { SPCR = (SPCR & ~SPI_MODE_MASK) | mode; } void MVSPIClass::setClockDivider(uint8_t rate) { SPCR = (SPCR & ~SPI_CLOCK_MASK) | (rate & SPI_CLOCK_MASK); SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((rate >> 2) & SPI_2XCLOCK_MASK); } MVSPIClass MVSPI; MicroView uView;